
COURSE DESCRIPTOR BOOKLET

M.Tech(Embedded Systems)

ELECTRONICS AND COMMUNICATION ENGINEERING

(Accredited by NBA)

R-18 REGULATIONS

BLOOM'S TAXONOMY OF LEARNING OUTCOMES

.....Moving Towards Perfection in Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous)

Approved by AICTE; Affiliated to JNTUH and Accredited by NAAC with 'A' Grade Dundigal, Hyderabad - 500 043

Vision

To produce professionally competent Electronics and Communication Engineers capable of effectively and efficiently addressing the technical challenges with social responsibility.

Mission

The mission of the Department is to provide an academic environment that will ensure high quality education, training and research by keeping the students abreast of latest developments in the field of Electronics and Communication Engineering aimed at promoting employability, leadership qualities with humanity, ethics, research aptitude and team spirit.

S. No.		Page No.					
	PART – I						
	(As Per NBA Norms post June, 2015)	5					
1	1 Program Educational Objectives, Outcomes and Assessment Criteria						
2	M. Tech – Embedded systems Program Educational Objectives	6					
3	M. Tech - Embedded systems Program Outcomes	8					
4	Mapping of Program Educational Objectives to Program Outcomes	9					
5	Relation between the Program Outcomes and the Program Educational Objectives	10					
6	Program Outcomes of M.Tech, Embedded systems Masters.	11					
7	Procedures for Outcome Delivery and Assessment with Respect to Program Outcomes	13					
8	Methods of Measuring Learning Outcomes and Value Addition	15					
A.	PART – II SSESSMENT OF COURSE LEVEL STUDENT LEARNING OUTCO	OMES					
1	Course Purpose	20					
2	Expected Learning Outcomes	21					
3	To Define Effective Learning Outcome Statements	21					
4	Tips for Developing Course Level Expected Learning Outcomes Statements	23					
5	Sample Expected Learning Outcomes Statements	23					
6	An Overview of Assessment	24					
7	Description of a Course Purpose	25					
8	Procedure for Development of Expected Learning Outcomes for a Course	26					
9	References	27					
	ANNEXURES						
А	Sample Course Description (As Per NBA Norms post June, 2015)	28					

Contents Program Education Objectives and Outcomes

As Per NBA Norms Post June, 2016 Semester: I-I, I-II, II-I, II-II

Part – I

PROGRAM EDUCATIONAL OBJECTIVES AND OUTCOMES

First version 22 July, 2014

Program Educational Objectives, Program Outcomes and Assessment Criteria (Approved by DAC ECE on 3/9/2014):

Electronics and Communication Engineering Department Advisory Council: The Electronics and Communication Engineering Department Advisory Council (ECEDAC) includes a diverse group of experts from academic and industry, as well as alumni representation. The Advisory Board meets annually, or as needed, for a comprehensive review of the Electronics and Communication Engineering Department strategic planning and programs. The Advisory Council meets with administration, faculty and students and prepares a report, which is presented to principal. In each visit, the Department of Electronics and Communication Engineering responds to the report indicating improvements and amendments to the program.

1. PROGRAM EDUCATIONAL OBJECTIVES, OUTCOMES AND ASSESSMENT CRITERIA

Learning Outcomes, Assessment Criteria

The educational aims of a module are statements of the broad intentions of the teaching team. They indicate the objectives that the teaching team intends to cover and the learning opportunities that are necessary to be available to the student. A learning outcome is a statement that indicates the content that a learner (student) is expected to know, understand and/or be able to do at the end of a period of learning. It is advisable to express learning outcomes with the common prefix:

'On completion of (the period of learning e.g. module), the student is expected to be able to...'

Generally, learning outcomes do not specify curriculum, but more general areas of learning. It is not possible to prescribe precisely how specific a learning outcome statement should be. There is a balance to be struck between the degree of specificity in a learning outcome statement and that achieved by the assessment criteria. If there are too many learning outcomes for a module, then either they are becoming assessment criteria or they are specifying too much curricular detail. The curriculum should be described in the range statement. Too few learning outcomes are unlikely to provide sufficient information on the course. As a guide, there should be between 4 and 8 learning outcomes for a course.

The Program Educational Objectives (PEOs) of the Electronics and Communication Engineering department are broad statements or road maps describing career and professional objectives that intend the graduates to achieve through this program.

2. M. TECH – EMBEDDED SYSTEMS PROGRAM

EDUCATIONAL OBJECTIVES

A graduate of Institute of Aeronautical Engineering in Embedded systems discipline should have a successful career in Electronics and Communication Engineering or a related field, and within three to five years, should attain the following:

PROGRAM EDUCATIONAL OBJECTIVES:

PEO1. Research and development

Be successful practicing professionals or pursue doctoral studies in allied areas, contributing significantly to **research and development** activities

PEO2. Demonstrate

Demonstrate technical competence, such as identifying, formulating, analyzing, and creating engineering solutions using appropriate current embedded engineering techniques, skills, and tools.

PEO3. Communicate

To work and **communicate** effectively in inter-disciplinary environment, either in a team or independently and establish leadership qualities.

PEO4. Apply

An ability to **apply** in-depth knowledge to evaluate, analyze and synthesize existing and novel designs.

These objectives are quite broad by intention, as Electronics and Communication Engineering graduates may seek further education or work in diverse areas. To make these objectives meaningful, they may be demonstrated by performance, actions, or achievements.

i. To prepare the students who will be able to attain a solid foundation in Embedded systems fundamentals with an attitude to pursue continuing education.

- □ Make the students to understand their aptitude to choose the correct path of study which leads to higher qualifications and heights in the chosen field.
- □ Should be prepared to undergo rigorous training in their fields of working.
- □ Be capable of utilizing the solid foundation obtained at institute to apply successfully in solving the real time engineering problems.
- □ Students need to have creative thinking processes that are acquired through good training to find solutions to engineering problems.

ii. To prepare the students to function professionally in an increasingly international and rapidly changing world due to the advances in technologies and concepts and to contribute to the needs of the society.

- Adoptability and accommodative mind set to suit modern world and changing economies.
- □ By working hard in the chosen field and sharing the professional experience at different forums within and outside the country.
- Desirable to be a member of various professional societies (IEEE, IETE, ISTE, IE, and etc.) to keep yourself abreast with the state-of-the-art technology.
- □ Should continue additional education in a broad range of subjects other than engineering may be needed in order to meet professional challenges efficiently and effectively.
- Continuous interaction with educational and research institutions or industrial research labs.
- □ Have a sound foundation of knowledge within a chosen field and achieve good depth and experience of practice in it.
- □ Able to relate knowledge within chosen field to larger problems in society and able to appreciate the interaction between science, technology, and society.
- □ Strong grasp of quantitative reasoning and an ability to manage complexity and ambiguity.
- □ To conduct research, and design, develop, test and oversee the development of electronic systems for global upliftment.
- □ Applying scientific knowledge to solve technical problems and develop products and services that benefit the society.
- □ An electronic engineer shall contribute to the society by research, design and development, testing and evaluation, application by manufacturing, maintenance by service, management and other functions like sales, customer service and etc.

iii. To prepare the students to acquire and exercise excellent leadership qualities, at various levels appropriate to their experience, to address issues in a responsive, ethical, and innovative manner.

- Gives ample opportunity to work in diverse fields to acquire leadership roles in professional circles outside the workplace.
- □ Should keep in mind that the opportunities may change with the times.
- □ Should be prepared for creative solo and collaborative brainstorming sessions.
- Be able to inspire the team with selfless motivation and attitude to achieve success.
- □ Ability to think laterally or at-least have a flexibility of thought and make choices based on the requirement for situation.

iv. To prepare the students who will be able to excel, in their careers by being a part of success and growth of an organization, with which they are associated.

- □ To achieve this, the focus should not be limited to an engineering curriculum and even to the class room.
- □ Continuing professional education by attending short term in courses design to update engineering skills.
- □ A lifelong commitment to learning new and specialized information.
- □ Should accept first person responsibility and should take the initiative in carrying out the work.
- □ Should be determined for the duty and dedicated to work and have passion for that.

- □ Be delight at work with a positive attitude.
- □ Should be a detailed worker so that one can be relied by the organization.

The department of Electronics and Communication Engineering periodically reviews these objectives and as part of this review process, encourages comments from all interested parties including current students, alumni, prospective students, faculty those who hire or admit our graduates to other programs members of related professional organizations, and colleagues from other educational institutions.

3. M. TECH – EMBEDDED SYSTEMS PROGRAM OUTCOMES:

Masters of the embedded systems Program Outcomes will demonstrate:

PROGRAM OUTCOMES:

PO1. Engineering Knowledge

Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IoT, Processor technology, and Storage technology.

PO2. Teamwork and Project Management

Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.

PO3. Develop and Novel Designs

Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.

PO4. Analyze Complex Systems

Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.

PO5. Technical Presentation Skills

Write and present a substantial technical report / document.

PO6. Development of Solutions

Independently carry out research / investigation and development work to solve practical problems.

PO7. Lifelong learning

Recognize the need to engage in lifelong learning through continuing education and research.

4. MAPPING OF PROGRAM EDUCATIONAL OBJECTIVES TO PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES

The following Figure shows the correlation between the PEOs and the POs and PSOs

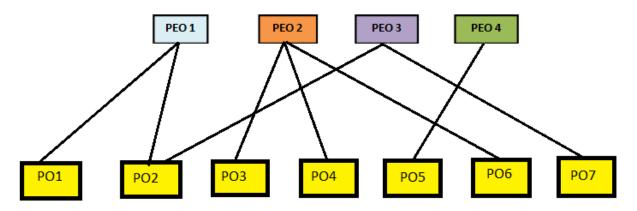


Figure: Correlation between the PEOs and the POs

The following Table shows the correlation between the Program Education	nal Objectives and the
Program Outcomes & Program Specific Outcomes	

	Program Educational Objectives		Program Outcomes
T		DO1	
I	Be successful practicing professionals or pursue doctoral studies in allied areas, contributing significantly to research and development activities	PO1	Engineering Knowledge Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IoT, Processor technology, and Storage technology.
		PO2	Teamwork and Project Management Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.
II	To be in a position to analyze real life	PO3	Develop and Novel Designs
	problems and design socially accepted and economically feasible solutions in the respective fields.		Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.
		PO4	Analyze Complex Systems Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.
		PO6	Development of Solutions Independently carry out research / investigation and development work to solve practical problems.
III	To work and communicate effectively in	PO2	Teamwork and Project Management
	inter-disciplinary environment, either		Function on multidisciplinary environments by
	independently or in a team, and establish		working cooperatively, creatively and responsibly as

	leadership qualities.		a member of a team.
		PO7	Lifelong learning Recognize the need to engage in lifelong learning through continuing education and research.
IV	An ability to apply in-depth knowledge to	PO5	Technical Presentation Skills
	evaluate, analyze and synthesize existing		Write and present a substantial technical report /
	and novel designs.		document.

5. RELATION BETWEEN THE PROGRAM OUTCOMES AND PROGRAM EDUCATIONAL OBJECTIVES

A broad relation between the Program Educational Objectives and the Program Outcomes is given in the following table:

	PEOs	(1)	(2)	(3)	(4)
POs		Research and	Demonstrate	Communicate	Apply
		development			
PO1	Engineering Knowledge	3			
PO2	Teamwork and Project Management	3		1	
PO3	Develop and Novel Designs		3		
PO4	Analyze Complex Systems		3		
PO5	Technical Presentation Skills				3
PO6	Development of Solutions		3		
PO7	Lifelong learning			3	

Relationship between Program Outcomes and Program Educational Objectives Key: 3 = Highly Related; 1 = Low

6. PROGRAM OUTCOMES OF (M.Tech) EMBEDDED SYSTEMS MASTERS

Masters from accredited programs must achieve the following learning outcomes, defined by broad areas of learning.

The outcomes are distributed within and among the courses within our curriculum, and our students are assessed for the achievement of these outcomes, as well as specific course learning objectives, through testing, surveys, and other faculty assessment instruments. Information obtained in these assessments is used in a short-term feedback and improvement loop.

Each Electronics and Communication Engineering student will demonstrate the following attributes by the time they masters:

PO1. Engineering Knowledge

Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems

Performance Criteria Definitions

- □ Identify the concepts and/or equations
- □ Execute the solution using a logic and structured approach
- **□** Evaluate the solution of the problem

PO2. Teamwork and Project Management

Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments

Performance Criteria Definitions

- □ Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- Awareness of implications to society at large

PO3. Develop Novel designs

Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations

Performance Criteria Definitions

- **u** Use modern engineering tools for the system design, simulation and analysis
- □ Use software applications effectively to write technical reports and oral presentations
- □ Use modern equipment and instrumentation in the design process, analysis and troubleshooting

PO4. Analyze Complex Systems

Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions

Performance Criteria Definitions

- □ Identify problem/purpose
- □ Prepare hypothesis
- □ Outline procedure
- □ List materials and equipment
- Conduct experiment
- □ Record observations, data and results
- □ Perform analysis
- Document conclusions

PO5. Technical Presentation skills

Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions *Performance Criteria Definitions*

- **u** Use appropriate format and grammatical structure
- Create a well organized document
- □ Present the results appropriately
- Demonstrate effective oral communication

PO6. Development of Solutions

Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations

Performance Criteria Definitions

- □ Awareness of global effects of the product / practice / event
- □ Understanding of economic factors
- Awareness of implications to society at large

PO7. Life-long Learning

Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change

Performance Criteria Definitions

- **□** Find relevant sources of information
- **D** Participate in school or professional seminars
- □ Participate in students or professional associations

I SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBEDDED	EMBEDDED SYSTEM DESIGN								
Course Code	BESB01	BESB01								
Programme	M.Tech	M.Tech								
Semester	Ι	Ι								
Course Type	Core									
Regulation	IARE - R18									
		Theory		P	ractical					
Course Structure	Lectures Tutorials Credits Laboratory Credits									
	3 - 3									
Course Faculty	Mr. K.Ravi, A	Mr. K.Ravi, Assistant Professor								

I. COURSE OVERVIEW:

Embedded systems have become the next inevitable wave of technology, finding application in diverse fields of engineering. The goal of this course is to impart training to graduate engineers, in specialized area of Embedded Systems so that they can develop expertise in developing and deploying embedded systems over a wide range of applications. This course provides the basic knowledge over the hardware units and devices for design of embedded systems. It also provides the information about the Use architectures of embedded RISC processors and system on chip processor design of embedded systems. This course is intended to Analyze interrupt latency, context switching time, for development of device drives for timing devices.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC533	VI	Embedded C	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded System Design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	>	Videos	>	MOOCs
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

	50 %	To test the objectiveness of the concept.	
	30 %	To test the analytical skill of the concept.	
20 % To test the application skill of the concept.			

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Table 1: Assessment pattern	for CIA
-----------------------------	---------

Component	Tł	leory	Total Marks
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and	3	Term paper
	modern tools in the field of embedded system and sub		
	areas IoT, Processor technology, storage technology.		
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member	2	Term paper and Guest Lectures
	of a team.		
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminar and Guest Lectures
PO 4	Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.	3	NPTEL Videos and Guest Lecturers

3 = **High; 2** = **Medium; 1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	To introduce the difference between embedded systems and general purpose systems.
II	To optimize hardware designs of custom single-purpose processors.
III	To compare different approaches in optimizing general-purpose processors.
IV	To introduce different peripheral interfaces to embedded systems.
V	To understand the design tradeoffs made by different models of embedded systems.
VI	To apply knowledge gained in software-hardware integration in team-based projects

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understand the basic concepts of Embedded	CLO 1	Understand the definition of Embedded system and classification.
	systems and its applications.	CLO 2	Analyze the history of Embedded Systems and its applications.
		CLO 3	Understand the characteristics and Quality Attributes of Embedded Systems.

COs	Course Outcome	CLOs	Course Learning Outcome				
CO 2	Understand and analyze different processors in	CLO 4	Describe general purpose and domain specific processors.				
	Embedded Systems	CLO 5	Explain the concept of memory shadowing and memory selection for embedded systems.				
		CLO 6	Distinguish between onboard and external communication interfaces.				
CO 3	Describe about Embedded Firmware design approaches	CLO 7	Watchdog Timer.				
	and development languages.	approaches.					
		CLO 9	Describe the importance of Embedded Firmware development Languages.				
CO 4	Explain about Operating System basics,	CLO 10	Understand the importance of operating system basics and types of operating systems.				
	Multiprocessing and Multitasking.	rocessing and CLO 11 Distinguish between Multipro					
		CLO 12	Explain about the concept of task scheduling.				
CO 5	Describe about	CLO 13	Describe about different Synchronization Issues.				
	synchronization issues and task synchronization techniques.	CLO 14	Analyze different task synchronization techniques.				
	contractor.	CLO 15	Understand the concept of how to choose an RTOS.				

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BESB01.01	CLO 1	Understand the definition of Embedded system and classification.	PO 1	2
BESB01.02	CLO 2	Analyze the history of Embedded Systems and its applications.	PO 1	2
BESB01.03	CLO 3	Understand the characteristics and Quality Attributes of Embedded Systems.	PO 1, PO 3	1
BESB01.04	CLO 4	Describe general purpose and domain specific processors.	PO 2, PO 3	3
BESB01.05	CLO 5	Explain the concept of memory shadowing and memory selection for embedded systems.	PO 1	3
BESB01.06	CLO 6	Distinguish between onboard and external communication interfaces.	PO 2	3
BESB01.07	CLO 7	Describe importance of Real Time Clock and Watchdog Timer.	PO 3	3
BESB01.08	CLO 8	Explain about Embedded firmware design approaches.	PO 1, PO 3	2
BESB01.09	CLO 9	Describe the importance of Embedded Firmware development Languages.	PO 3, PO 4	2
BESB01.10	CLO10	Understand the importance of operating system basics and types of operating systems.	PO 1, PO 4	3
BESB01.11	CLO 11	Distinguish between Multiprocessing and Multitasking.	PO 3	2

BESB01.12	CLO 12	Explain about the concept of task scheduling.	PO3, PO 4	3			
BESB01.13	CLO 13	Describe about different Synchronization Issues.	PO 2	2			
BESB01.14	CLO 14	Analyze different task synchronization techniques.	PO 3, PO 4	3			
BESB01.15	CLO 15	Understand the concept of how to choose an RTOS.	PO 3, PO 4	2			
$2 - \text{High} \cdot 2 - \text{Modium} \cdot 1 - \text{Low}^2$							

3 = High; **2** = Medium; **1** = Low**2**

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes(PO)				
(COs)	PO 1	PO 2	PO 3	PO 4		
CO 1	3		2			
CO 2	3	2	2			
CO 3	2		3	2		
CO 4	2	2	2	2		
CO 5		2	2	2		

3 = High; 2 = Medium; 1 = Low2

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning		Progra	m Outcome(PO)	
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 4
CLO 1	3			
CLO 2	3			
CLO 3	3		3	
CLO 4		3	2	
CLO 5	2			
CLO 6		2		
CLO 7			3	
CLO 8	2		3	
CLO 9			3	3
CLO 10	3			3

CLO 11		2	
CLO 12		2	3
CLO 13	2		
CLO 14		2	3
CLO 15		2	2

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES –DIRECT:

CIE Exams	PO1, PO2, PO3, PO 4	SEE Exams	PO1, PO2, PO3, PO 4	Seminar and Term Paper	PO1, PO2, PO3, PO4
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -- INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

I Semester: ESD PCC : CSE / SE / AE /(CAD /CAM) / PE/ST								
Course code Category Hours / Week Credits Maximum Mark						m Marks		
BES001	Core/Elective	L	Т	Р	С	CIA	SEE	Total
DESUUI		3	-	-	3	30	70	100
Contact Classes: 45	Tutorial Classes: Nil		Practical Classes: Nil			Total Classes: 45		

OBJECTIVES:

The course should enable the students to:

- I. To introduce the difference between embedded systems and general purpose systems.
- II. To optimize hardware designs of custom single-purpose processors.
- III. To compare different approaches in optimizing general-purpose processors.
- IV. To introduce different peripheral interfaces to embedded systems.
- V. To understand the design tradeoffs made by different models of embedded systems.
- VI. To apply knowledge gained in software-hardware integration in team-based projects.

Definition of Embedded System, Embedded Systems Vs General Computing Systems, History of Embedded						
Systems, Classification, Major Application Areas, Purpose of Embedded Systems, Characteristics and Quality						
Attributes of Embedded Systems.						
UNIT-II TYPICAL EMBEDDED SYSTEM:	Classes: 09					
Core of the Embedded System: General Purpose and Domain Specific Processors, ASICs, PLDs, Com	mercial Off-					
The-Shelf Components (COTS), Memory: ROM, RAM, Memory according to the type of Interfac	ice, Memory					
Shadowing, Memory selection for Embedded Systems, Sensors and Actuators, Communication Interfac	ace: Onboard					
and External Communication Interfaces.						
UNIT-III EMBEDDED FIRMWARE:	Classes: 09					
Reset Circuit, Brown-out Protection Circuit, Oscillator Unit, Real Time Clock, Watchdog Timer,	, Embedded					
Firmware Design Approaches and Development Languages.						
RTOS BASED EMBEDDED SYSTEM DESIGN:						
	Classes: 09					
Operating System Basics, Types of Operating Systems, Tasks, Process and Threads, Multiproc	ocessing and					
Multitasking, Task Scheduling.						
UNIT-V TASK COMMUNICATION:	Classes: 09					
Shared Memory, Message Passing, Remote Procedure Call and Sockets, Task Synchronization: Task						
Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to Choose an						
Communication/Synchronization Issues, Task Synchronization Techniques, Device Drivers, How to	o Choose an					

Classes: 09

Text Books:

UNIT-I

1. Embedded System Design - Frank Vahid, Tony Givargis, John Wiley.

INTRODUCTION TO EMBEDDED SYSTEMS:

Reference Books:

1. Embedded Systems - Raj Kamal, TMH.

2. Introduction to Embedded Systems - Shibu K.V, McGraw Hill.

3. Embedded Systems - Lyla, Pearson, 2013

4. An Embedded Software Primer - David E. Simon, Pearson Education.

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Topic Outcomes	Topic/s to be covered	Reference		
No	•	•			
1-3	Understand the definition of	Definition of embedded system, embedded	T1: 5.1, 5.2, R1: 1.7		
	Embedded system and	systems vs general computing systems.			
	classification.				
4-6	Analyze the history of History of embedded systems, classification,		T1:6.1,6.2, 6.3, T1:		
	Embedded Systems and its	major application areas.	6.4-6.6		
	applications.				
7-9	Understand the characteristics	e characteristics Purpose of embedded systems,			
		characteristics and quality attributes of	6.15 R2:7.1, 8.1		

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
	and Quality Attributes of	embedded systems.	
	Embedded Systems.		
10-12	Describe general purpose and	Core of the embedded system: general	T1:7.1, 7.4 T1:7.7, 7.8-
10 12	domain specific processors.	purpose and domain specific processors.	7.10 R2:7.2
13-16	Explain the concept of memory	Basics, PLDs, commercial off-the-shelf	T1: 6.12, 9.4,9.6, R2:
15-10		components (cots), memory: ROM, RAM,	4.2,
	shadowing and memory	memory according to the type of interface,	1.2,
	selection for embedded	memory shadowing, memory selection for	
	systems.	embedded systems.	
17-19	Distinguish between onboard	Sensors and actuators, communication	T1: 7.12,10.4, R2: 4.2,
	and external communication	interface: onboard and external	T1: 10.6
	interfaces.	communication interfaces.	
20-21	Describe importance of Real	Reset circuit, brown-out protection circuit,	T1: 10.5, T1:
	Time Clock and Watchdog	oscillator unit, real time clock, watchdog	8.1,8.2, 8.4,8.5,8.6
	Timer.	timer,	R2: 4.4
22-25	Explain about Embedded	Embedded firmware design approaches.	T1: 8.2,8.9
	firmware design approaches.		R2: 4.4,
26-30	Describe the importance of	Embedded firmware development	T1: 8.12, 8.13, 8.14
	Embedded Firmware	languages.	
	development Languages.		
31-33	Understand the importance of	Operating system basics, types of operating	T1: 9.1, 9.2,9.3
	operating system basics and	systems.	
	types of operating systems.		
34-36	Distinguish between	Tasks, process and threads, multiprocessing	R1:7.1,7.3 R1:7.4,7.7
	Multiprocessing and Multitasking.	and multitasking.	
37-39	Explain about the concept of task	Task scheduling.	T1: 8.12, 8.13, 8.14
	scheduling.		
40-41	Describe about different	Shared memory, message passing, remote	T1: 9.1, 9.2,9.3
	Synchronization Issues.	procedure call and sockets, task synchronization: task	
		communication/synchronization issues.	
42-44	Analyze different task	Task synchronization techniques	R1:7.1,7.3 R1:7.4,7.7
	synchronization techniques.		
45	Understand the concept of how to	Device drivers, how to choose an RTOS.	T1: 9.1, 9.2,9.3
	choose an RTOS.		

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY /PROFESSIONAL REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Concepts of ERTOS	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 4

Prepared By:

Mr. K Ravi, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS ANDCOMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title		MICROCONTROLLERS AND PROGRAMMABLE DIGITAL SIGNAL PROCESSING				
Course Code	BESB02	BESB02				
Programme	M.Tech	(ES)			
Semester	Ι	ECE	2			
Course Type	Core					
Regulation	IARE - R	18				
	Theory Practical					cal
Course Structure	Lectur	res	Tutorials	Credits	Laboratory	Credits
	3		-	3	-	-
Chief Coordinator	Dr. P Munaswami, Professor, ECE					
Course Faculty	Mr. V. Naresh Kumar, Assistant Professor, ECE					

I. COURSE OVERVIEW:

This course starts by introducing some basic ideas of ARM Cortex-M3 Processor and LPC 17XX Microcontroller architectures and their features. Subsequently the course covers Programmable DSP Processor architecture. As we progress with the course students will be familiarized with the programming models of Microcontrollers and P-DSPs and their applications in real world.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BESB01	Ι	Embedded System Design	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Microcontrollers And Programmable Digital Signal Processing	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	Chalk & Talk	~	Quiz	~	Assignments	×	MOOCs	
~	LCD / PPT	~	Seminars	~	Mini Project	×	Videos	
×	✗ Open Ended Experiments							

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make- examination.

Semester End Examination (SEE): The SEE shall be conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE units and each unit carries equal weight age in terms of marks distribution. The question paper pattern shall be as defined below. Two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.			
30 %	To test the analytical skill of the concept.			
20 %	To test the application skill of the concept.			

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component		T-4-1 Marsler	
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
CIA Marks	25	5	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year I semester and II semester. For seminar, a student under the supervision of a concerned faculty member, shall identify a topic in each course and prepare the term paper with overview of topic. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Independently carry out research/investigation and	2	Quiz
	development work to solve practical problems		
PO 3	Apply advanced level knowledge, techniques, skills and	2	Assignments
	modern tools in the field of Embedded Systems.		
PO 6	Understand the importance of embedded technologies and	3	Seminars
	design new innovative products for solving society relevant		
	problems		
PO 7	Recognize the need to engage in lifelong learning through	2	Term paper
	continuing education and research.		

3= High; 2 = Medium; 1 = Low

VII COURSE OBJECTIVES:

The course should enable the students to:

Ι	Compare and select ARM processor core based SoC with several features/peripherals based on requirements of embedded applications.
II	Identify and characterize architecture of Programmable DSP Processors
III	Develop small applications by utilizing the ARM processor core and DSP processor based platform

VIII COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe different ARM processors,	CLO 1	Understanding the ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence.
	programming models, operations and interrupts	CLO 2	Study the Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes, Permissions, Bit-Band Operations.
	interrupts.	CLO 3	Discuss the Unaligned and Exclusive Transfers. Pipeline, Bus Interfaces.
CO 2	Demonstrate various exceptions, interrupts,	CLO 4	Examine the various Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behavior, Fault Exceptions
	configurations, interrupt latency.	CLO 5	Discuss the Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller.
		CLO 6	Understand the Basic Configuration, SYSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrupt Latency.
CO 3	Describe the operation, feature of the LPC 17xx	CLO 7	Describe the LPC 17xx microcontroller- Internal memory, GPIOs, Timers.
	microcontroller.	CLO 8	Study the features of ADC, UART and other serial interfaces.
		CLO 9	Understand the concepts of PWM, RTC, WDT.
CO 4	Describe the programmable DSP	CLO 10	Describe the Programmable DSP (P-DSP) Processors: Harvard architecture, Multi port memory.

COs	Course Outcome	CLOs	Course Learning Outcome
	processor and TI DSP processor.	CLO 11	Study the features of architectural structure of P- DSP- MAC unit, Barrel shifters.
	processor.	CLO 12	Understand the Introduction to TI DSP processor family.
CO 5	Design and development architectural patterns and	CLO 13	Study the VLIW architecture and TMS320C6000 series, architecture study, data paths, cross paths.
	reference models.	CLO 14	Understand the Introduction to Instruction level architecture of C6000 family, Assembly Instructions memory addressing, for arithmetic, logical operations.
		CLO 15	Describe the Code Composer Studio for application development for digital signal processing, On chip peripherals, Processor benchmarking.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO	CLO's	At the end of the course, the student	PO's	Strength of
Code		will have the ability to:	Mapped	Mapping
BESB02.01	CLO 1	Understanding the ARM Cortex-M3	PO1	3
		processor: Applications, Programming		
		model - Registers, Operation modes,		
		Exceptions and Interrupts, Reset		
		Sequence.		
BESB02.02	CLO 2	Study the Instruction Set, Unified	PO1	2
		Assembler Language, Memory Maps,		
		Memory Access Attributes, Permissions,		
		Bit-Band Operations.		
BESB02.03	CLO 3	Discuss the Unaligned and Exclusive	PO3	2
		Transfers. Pipeline, Bus Interfaces.		
BESB02.04	CLO 4	Examine the various Exceptions, Types,	PO1	2
		Priority, Vector Tables, Interrupt Inputs	PO6	
		and Pending behavior, Fault Exceptions		
BESB02.05	CLO 5	Discuss the Supervisor and Pendable	PO1	2
		Service Call, Nested Vectored Interrupt	PO7	
		Controller.		
BESB02.06	CLO 6	Understand the Basic Configuration,	PO3	3
		SYSTICK Timer, Interrupt Sequences,		
		Exits, Tail Chaining, Interrupt Latency.		
BESB02.07	CLO 7	Describe the LPC 17xx microcontroller-	PO7	3
		Internal memory, GPIOs, Timers.		
BESB02.08	CLO 8	Study the features of ADC, UART and	PO1	2
		other serial interfaces.		
BESB02.09	CLO 9	Understand the concepts of PWM, RTC,	PO3	2
		WDT.	PO6	
BESB02.10	CLO 10	Describe the Programmable DSP (P-DSP)	PO1	2
		Processors: Harvard architecture, Multi	PO7	
		port memory.		
BESB02.11	CLO 11	Study the features of architectural	PO1	2
		structure of P-DSP- MAC unit, Barrel		
		shifters.		
BESB02.12	CLO 12	Understand the Introduction to TI DSP	PO6	2
		processor family.		
BESB02.13	CLO 13	Study the VLIW architecture and	PO1	2
		TMS320C6000 series, architecture study,		
		data paths, cross paths.		

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BESB02.14	CLO 14	Understand the Introduction to Instruction level architecture of C6000 family, Assembly Instructions memory addressing, for arithmetic, logical operations.	PO3	3
BESB02.15	CLO 15	Describe the Code Composer Studio for application development for digital signal processing, On chip peripherals, Processor benchmarking.	PO1	2

3= High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (PO)						
Outcomes (COs)	PO 1	PO 3	PO 6	PO 7			
CO 1	3	2					
CO 2	2	3	2	2			
CO 3	2	2	2	3			
CO 4	2		2	2			
CO 5	2	3					

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CL O	POs					
CLOs	PO1	PO3	PO6	PO7		
CLO 1	3					
CLO 2	2					
CLO 3		2				
CLO 4	2		2			
CLO 5	2			2		
CLO 6		3				
CLO 7				3		
CLO 8	2					
CLO 9		2	2			
CLO 10	2			2		
CLO 11	2					
CLO 12			2			
CLO 13	2					
CLO 14		3				
CLO 15	2					

3= High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO 1, PO 3 PO 6, PO 7	SEE Exams	PO 1, PO 3 PO 6, PO 7	Assignments	PO 3	Seminars	PO 6
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 6						

XIII. ASSESSMENT METHODOLOGIES-INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

MODULE -I	SYSTEMS ARM CORTEX-M3 PROCESSOR	Classes: 09				
ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence Instruction Set, Unified Assembler Language,						
Memory Maps, M	Memory Access Attributes, Permissions, Bit-Band Operations					
	ers. Pipeline, Bus Interfaces.					
MODULE - II	EXCEPTIONS AND INTERRUPT	Classes: 09				
Exceptions, Supe	es, Priority, Vector Tables, Interrupt Inputs and Pending rvisor and Pendable Service Call, Nested Vectored Interrupt YSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Inte	Controller, Basic				
	LPC 17XX MICROCONTROLLER	Classes: 09				
LPC 17xx micro interfaces, PWM,	controller- Internal memory, GPIOs, Timers, ADC, UART, RTC, WDT.	and other serial				
MODULE - IV	PROGRAMMABLE DSP (P-DSP) PROCESSORS	Classes: 09				
	SP (P-DSP) Processors: Harvard architecture, Multi port mem P- MAC unit, Barrel shifters, Introduction to TI DSP processor					
MODULE - V	VLIW ARCHITECTURE	Classes: 09				
Introduction to In addressing, for	VLIW architecture and TMS320C6000 series, architecture study, data paths, cross paths, Introduction to Instruction level architecture of C6000 family, Assembly Instructions memory addressing, for arithmetic, logical operations Code Composer Studio for application development for digital signal processing, On chip peripherals, Processor benchmarking.					
Text Books:						
 Joseph Yiu, "The definitive guide to ARM Cortex-M3", Elsevier, 2nd Edition. Venkatramani B. and Bhaskar M. "Digital Signal Processors: Architecture, Programming and Applications", TMH, 2nd Edition. 						
Reference Books:						
Designing and	v N, Symes Dominic, Wright Chris, "ARM System De l Optimizing", Morgan Kaufman Publication 'ARM System-on-Chip Architecture", Pearson Education	veloper's Guide:				
3. Frank Vahid an	d Tony Givargis, "Embedded System Design", Wiley ences and user manuals on www.arm.com, NXP Semiconductor					

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topic Outcomes	Topics to be covered	Reference
1-3	Understanding the ARM Cortex-M3 processor: Applications, Programming model – Registers, Operation modes, Exceptions and Interrupts, Reset Sequence.	ARMCortex-M3processor:ApplicationsProgrammingmodelRegistersOperationmodes,ExceptionsInterrupt,ResetSequence	T1: 1.1, 1.5,2.2 2.3, 3.7
4-7	Study the Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes, Permissions, Bit-Band Operations.	Instruction Set, Unified Assembler Language, Memory Maps, Memory Access Attributes Permissions, Bit-Band Operations	T1: 4.1 5.2,5.5
8-11	Discuss the Unaligned and Exclusive Transfers. Pipeline, Bus Interfaces.	Unaligned and Exclusive Transfers. Pipeline, Bus Interfaces	T1: 6.1
12-17	Examine the various Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behavior, Fault Exceptions	Exceptions, Types, Priority, Vector Tables, Interrupt Inputs and Pending behavior, Fault Exceptions	T1: 7.1, 7.2 7.4,7.5
18-20	Discuss the Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller.	Supervisor and Pendable Service Call, Nested Vectored Interrupt Controller	T2: 7.6,8.1
21-22	Understand the Basic Configuration, SYSTICK Timer, Interrupt Sequences, Exits, Tail Chaining, Interrupt Latency.	Basic Configuration, SYSTICK Timer, Interrupt Sequences Exits, Tail Chaining, Interrupt Latency	T1: 8.2, 8.5 9.1,9.2, 9.7
23-27	Describe the LPC 17xx microcontroller- Internal memory, GPIOs, Timers.	LPC17xx microcontroller- Internal memory, GPIOs, Timers.	R4: 8.4,8.10,8.21
28-32	Study the features of ADC, UART and other serial interfaces	ADC, UART, Other serial interfaces	R4: 8.14, 8.16,8.17
33-35	Understand the concepts of PWM, RTC, WDT.	PWM,RTC, WDT	R4: 8.228.28,8.27
36-39	Describe the Programmable DSP (P-DSP) Processors: Harvard architecture, Multi port memory.	Programmable DSP Processors ,Harvard architecture Multi-port memory Multi-port memory	T2: 2.1 2.2,2.4
40-42	Study the features of architectural structure of P-DSP- MAC unit, Barrel shifters.	Architectural structure of P-DSP,Architectural structure of P-DSP,MAC unit, Barrel shifters	T2: 3.1,2.1,10.7
43-46	Understand the Introduction to TI DSP processor family.	Introduction to TI DSP processor family	T2: 2.5
47-49	Study the VLIW architecture and TMS320C6000 series, architecture study, data paths, cross paths.	VLIW architecture and TMS320C6000 series Architecture study, data paths, cross paths	T2: 2.5,13.4
50-52	Understand the Introduction to Instruction level architecture of C6000 family, Assembly	Introduction to Instruction level architecture of C6000	T2: 13.3 13.6,13.5

Lecture No.	Topic Outcomes	Topics to be covered	Reference
	Instructions memory addressing, for arithmetic, logical operations.	family Assembly Instructions memory addressing, Arithmetic, logical operations	
53-55	Describe the Code Composer Studio for application development for digital signal processing, On chip peripherals, Processor benchmarking.	Code Composer Studio Code Composer Studio for application development for digital signal processing on chip peripherals Processor benchmarking	T2:13.11, 2.8,14.12

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs
1	Design examples of ARM Cortex-M3 processor.	Project	PO 1, PO 3, PO 7
2	Program modelling	Seminars / Guest Lectures / NPTEL	PO 1,PO 3, PO 6
3	Case studies of different DSP applications.	Seminars / Guest Lectures / NPTEL	PO 1, PO 3,PO 6

Prepared by: Mr. V Naresh Kumar, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	PRIN	PRINCIPLES OF DISTRIBUTED EMBEDDED SYSTEMS							
Course Code	BES20	3ES205							
Programme	M.Te	ch							
Semester	Ι	ECE							
Course Type	Elective								
Regulation	R16								
		Th	eory	Pra	ctical				
Course Structure		Lectures	Tutorials	Practicals	Credits				
	3 3								
Course Faculty	Dr. S	Dr. S China Venkateswarlu, Professor, ECE							

I. COURSE OVERVIEW:

Principles of Distributed Embedded Systems course is the environment of real-time computer systems. In a hard real-time application, analysis of the real-time system market is carried out with emphasis on the field of embedded real-time systems.

An embedded real-time system is a part of a self-contained product, a television set or an automobile. Embedded real-time systems will form the most important market segment for real-time technology. It focuses on the real-time aspects of operating systems.

A real-time operating system must provide a predictable service to the application tasks such that the temporal properties of the complete software in a node can be statically analyzed. Many dynamic mechanisms, such as dynamic task creation or virtual memory management, which are standard in workstation operating systems, interfere with this predictability requirement of real-time systems. These absolute timestamps are used to reason about the precision and accuracy of a global time base, and to expose the fundamental limits of time measurement in a distributed real-time system the idea of a sparse time base is introduced to establish a consistent view of the order of computer-generated events in a distributed real-time system. Some fundamental conflicts in the design of real-time protocols are highlighted.

The requirement for flexibility is in conflict with many other desirable protocol properties, such as comparability, error detection, and replica determinism. These conflicts have lead to the design of many different real-time protocols that try to bridge the gap between these conflicting requirements. Some of these protocols, such as the CAN (Control Area Network) system aspects of distributed real-time applications, treating the issues of real-time, distribution, This cross fertilization between the academic world and the industrial world has led to the inclusion of many insightful examples from the industrial world to explain the fundamental scientific concepts in a real-world setting. The emerging field of embedded automotive electronics that is acting as a catalyst for technology in the current real-time systems market.

This Course can be used by professionals in the industry, the relevance of the latest scientific insights to the solution of everyday problems in the design and implementation of distributed and embedded real-time systems. The recent appearance of cost-effective powerful system chips has a momentous influence on the architecture and economics of future distributed system solutions.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BESB01	Ι	Embedded System Design	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Principles of Distributed Embedded Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	Open Ended Experime	ents					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
30 %	To test the analytical skill of the concept.
20 %	To test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Table 1: Assessment pattern for CIA

Component	The			
Type of Assessment	CIE Exam Technical Seminar and Term Paper		Total Marks	
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IoT, Processor technology, and Storage technology.	3	Seminar and Term Paper
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	Guest Lectures
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminars
PO 4	Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.	3	Guest Lecturers

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand the design principles of distributed embedded systems.
Π	Design CAN network based systems.
III	Understand RTOS to design embedded system

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understanding the basic concept of Real time systems, Internal and	CLO 1	Understanding the basic concept of Real time computer system requirements, global time, external clock synchronization.
	external clock synchronization, real time	CLO 2	Study of real time model, real time communication, temporal relations and dependability.
	model, Real time communication, rate constrains and time triggered.	CLO 3	Examine the power and energy awareness, real time systems, event trigger, time trigger and rate constrained.
CO 2	Examine the real time operating systems, inter component communication,	CLO 4	Discuss the real time operating systems; inter component communication, task management and dual role of time.
	task management and dual role of time , inter task interactions, agreement protocols and error detection	CLO 5	Describe the Inter task interactions, process input/output agreement protocol and error detection.
CO 3	Describe the System design, static and dynamic scheduling	CLO 6	Study the system design, scheduling problem and static and dynamic scheduling.
	and system design, validation	CLO 7	Study the system design, validation.
	and time-triggered architecture.	CLO 8	Describe the time-triggered architecture.
CO 4	Study the CAN, CAN open, CAN open standards, object	CLO 9	Understand CAN, CAN open Standards and object directory.
	directory, electronic data sheet and devices.	CLO 10	Understand the electronic data sheet and devices.

CO 5	Analyze CAN standards, configuration files, service	CLO 11	Study objectiv		configura	ation	files,	service	data
	data objectives; network management CAN open	CLO 12	3	tand	network	mana	agement	CAN	open
	messages and device profile encoder.	CLO 13	Analyz	e the	device prof	file en	coder.		

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO		At the end of the course, the student	PEO's	Strength of
Code	CLO's	will have the ability to:	Mapped	Mapping
BES205.01	CLO 1	Understanding the basic concept of	PO 1	2
		Real time computer system requirements,	PO 2	
		global time, external clock		
		synchronization.		
BES205.02	CLO 2	Study of real time model, real time	PO 2	2
		communication, temporal relations and		
		dependability.		
BES205.03	CLO 3	Examine the power and energy awareness,	PO 3	3
		real time systems, event trigger, time		
		trigger and rate constrained.		
BES205.04	CLO 4	Discuss the real time operating systems;	PO 3	3
		inter component communication, task	PO 4	
		management and dual role of time.		
BES205.05	CLO 5	Describe the Inter task interactions,	PO 2	2
		process input/output agreement protocol	PO 3	
		and error detection.		
BES205.06	CLO 6	Study the system design, scheduling	PO 4	3
		problem and static and dynamic		
		scheduling.		
BES205.07	CLO 7	Study the system design, validation.	PO 3	3
BES205.08	CLO 8	Describe the time-triggered architecture.	PO 1	3
BES205.09	CLO 9	Understand CAN, CAN open Standards	PO 1	2
		and object directory.	PO 2	
BES205.10	CLO 10	Understand the electronic data sheet and	PO 1	3
		devices.	PO 3	
BES205.11	CLO 11	Study the configuration files, service data	PO 1	2
		objectives.	PO 2	
BES205.12	CLO 12	Understand network management CAN	PO 2	2
		open messages.		
BES205.13	CLO 13	Analyze the device profile encoder.	PO 4	3

³ = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes	Program Outcomes (PO)			
(COs)	PO 1	PO 2	PO 3	PO 4
CO 1	3	2	3	
CO 2	3	2	3	3
CO 3	3		3	3

CO 4	3	2	3	
CO 5	3	2		3

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Learning Outcomes (CLOs)	Program Outcomes (PO)			
	PO 1	PO 2	PO 3	PO 4
CLO 1	3	2		
CLO 2		2		
CLO 3			3	
CLO 4			3	
CLO 5		2	3	
CLO 6		2	3	
CLO 7			3	
CLO 8	3			
CLO 9	3	2		
CLO 10	3		3	
CLO 11	3	2		
CLO 12		2		
CLO 13				3

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES –DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 3 PO 4	Seminar and Term Paper	PO 1, PO 2 PO 3, PO 4
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

Unit-I	REAL-TIME ENVIRONMENT :
--------	--------------------------------

Real-time computer system requirements, classification of real time systems, simplicity, global time, internal and external clock synchronization, real time model. Real time communication, temporal relations, dependability, power and energy awareness, real time communication, event triggered, rate constrained, time triggered.

Unit-II	REAL-TIME OPERATING SYSTEMS :		
	onent communication, task management and dual role of time; Inter task interactions, process it, agreement protocols, error detection.		
Unit-III	SYSTEM DESIGN :		
Scheduling	problem, static and dynamic scheduling, system design. Validation, time-triggered architecture.		
Unit-IV	INTRODUCTION TO CAN:		
Introductio	n to CAN open CAN open standard, object directory, electronic data sheets and devices.		
Unit-V	CAN STANDARDS:		
Configurat encoder	ion files, service data objectives, network management CAN open messages, device profile		
Text Book	s:		
Spring 2. Glaf P	nn Kopetz, "Real–Time systems-Design Principles for distributed Embedded Applications", er, 2nd Edition, 2011. . Feiffer, Andrew Ayre and Christian Keyold, "Embedded networking with CAN and CAN Copperhill Media Corporation, 1st Edition, 2008.		
Reference	Books:		
	ajkamal, 'Embedded system-Architecture-Programming-Design", Tata Mc Graw Hill, 3rd dition, 2011.		
2. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley and sons, 2nd Edition, 2002.			
	, , , , , , , , , , , , , , , , , , ,		
Web Refe	rences:		
	tps://www.youtube.com/watch?v=Uk9zFrEGguM tps://freevideolectures.com/blog/2010/11/130-nptel-iit-online-courses/		
E-Text Bo	oks:		
2. ht	tp://esd.cs.ucr.edu/ tp://dsp-book.narod.ru/ESDUA.pdf ww.intel.com/education/highered/Embedded/Syllabus/Embedded_syllabus.pdf		

- 3. www.intel.com/education/highered/Embedded/Syllabus/Embedded_syllabus.pdf
- 4. www.dmi.uib.es/~jproenza/SistEncTR/Introduction.pdf

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topic Outcomes	Topics to be covered	Reference
1-3	Understanding the Real-time computer system requirements, classification of real time systems	Real-time computer system requirements, classification of real time systems	T1:1.1 to 1.7
4-6	Introduction to global time, internal and external clock synchronization, real time model.	Introduction to global time, internal and external clock synchronization, real time model.	T1:3.1 to 3.5
7-9	Examine the Real time communication, temporal relations, dependability	Real time communication, temporal relations, dependability	T1:7.1 to 7.7
10-13	Discuss the real time communication, event triggered, rate constrained, time triggered.	Real time communication, event triggered, rate constrained, time triggered.	T1:7.1 to 7.7 T1:8.1 to 8.5
14-16	Describe the Real-Time Operating Systems , Inter component communication, task management and dual role of time	Real-Time Operating Systems , Inter component communication, task management and dual role of time	T1:10.1 to 10.5

Lecture No	Topic Outcomes	Topics to be covered	Reference
	Study the Inter task interactions,	Inter task interactions, process	T1:9.1 to 9.6
17-20	process input/output, agreement	input/output, agreement protocols,	T1:10.1 to
	protocols, error detection.	and error detection.	10.5
	Study the System Design,	System Design,	T1:13.1 to
21-24	Scheduling problem, static and	Scheduling problem, static and	13.6
	dynamic scheduling	dynamic scheduling	
	Understand system design.	System design. Validation, time-	T1:13.1 to
25-28	Validation, time-triggered	triggered architecture.	13.6
	architecture.		
29-32	Understand the CAN, Introduction	CAN, Introduction to CAN open	
29-32	to CAN open CAN open standard	CAN open standard	R1: 245-309
33-36	Study the object directory, electronic	Object directory, electronic data sheets	R1: 40-93
33-30	data sheets and devices.	and devices.	
	Analyze CAN Standards	CAN Standards	R1: 40-93
37-40	Configuration files, service data	Configuration files, service data	
	objectives.	objectives.	
	Analyze the network management	network management CAN open	R1: 40-93
41-45	CAN open messages, device	messages, device profile encoder	
	profile encoder		

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance with POs
1	Design of Sensor network scenarios	Seminars / NPTEL	PO 1, PO 3, PO 4
2	OS programming technology	Seminars / Guest Lectures / NPTEL	PO 3, PO 4
3	Low-Power Networking Systems	Laboratory Practices	PO 3, PO 4

Prepared By: Dr. S China Venkateswarlu, Professor

HOD, ECE

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	WIRELESS LANS AND PANS					
Course Code	BESB03	BESB03				
Programme	M.Tech	M.Tech				
Semester	Ι					
Course Type	Elective					
Regulation	IARE - R18					
		Theory		Prac	tical	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	3 - 3 -				-	
Course Faculty	Mr. M.Lakshmi Raviteja, Assistant Professor					

I. COURSE OVERVIEW:

Embedded systems have become the next inevitable wave of technology, finding application in diverse fields of engineering. The goal of this course is to impart training to graduate engineers, in specialized area of Embedded Systems so that they can develop expertise in developing and deploying embedded systems over a wide range of applications. This course provides the basic knowledge over the hardware units and devices for design of embedded systems. It also provides the information about the Use architectures of embedded RISC processors and system on chip processor design of embedded systems. This course is intended to Analyze interrupt latency, context switching time, for development of device drives for timing devices.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	AEC524	VI	Wireless Communication and Networks	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Wireless LANs and PANs	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	Ppen Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.	
30 %	To test the analytical skill of the concept.	
20 %	% To test the application skill of the concept.	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component	Th	Total Marks	
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and	3	Term paper
	modern tools in the field of embedded system and sub		
	areas IoT, Processor technology, storage technology.		
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member	2	Term paper and Guest Lectures
	of a team.		
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminar and Guest Lectures
PO 6	Independently carry out research / investigation and development work to solve practical problems.	3	NPTEL Videos and Guest Lecturers

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand different WLAN topologies and transmission techniques.	
II	Interpret Bluetooth and Zigbee technologies.	
III	Enhance the understanding of 3G systems and 4G networks.	

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Describe first and second generation cellular systems	CLO 1	Understand and analyze first and second generation cellular systems.
	and analyze cellular communications from 1G to 3G.	CLO 2	Analyze cellular communications from 1G to 3G.
	50.	CLO 3	Explain wireless 4G systems, and wireless spectrum.
CO 2	Understand and analyze WLAN topologies and analyze transmission techniques.	CLO 4	Describe carrier sense multiple access (CSMA), carrier sense multiple access with collision detection (CSMA/CD), carrier sense multiple access with collision avoidance (CSMA/CA).
		CLO 5	Explain WLAN topologies and analyze transmission techniques
		CLO 6	Distinguish random access methods.

COs	Course Outcome	CLOs	Course Learning Outcome	
CO 3	Demonstrate network architecture and analyze	CLO 7	Describe importance of MAC layer applications	
	MAC layer issues and describe the importance of MAC layer applications.	CLO 8	Explain network architecture and analyze MAC layer issues.	
CO 4	Explore Bluetooth technology and Bluetooth	CLO 9	Describe the importance of wireless private area networks.	
	specifications, describe the importance of wireless private area networks.	importance of wireless	CLO 10	Explain Bluetooth technology and Bluetooth specifications.
		CLO 11	Analyze Enhancements to Bluetooth technology and applications	
CO 5	Develop practical skills in the use of ZigBee components	CLO 12	Describe IEEE 802.15.3, The IEEE 802.15.4	
	and network topologies.	CLO 13	Understand ZigBee components and network topologies.	
		CLO 14	Analyze Device architecture and network topologies	

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BES002.01	CLO 1	Understand and Analyze First and Second Generation Cellular Systems.	PO 1	2
BES002.02	CLO 2	Analyze Cellular Communications from 1G to 3G.	PO 1, PO 2	2
BES002.03	CLO 3	Explain Wireless 4G systems, The Wireless Spectrum.	PO 1, PO 3	1
BES002.04	CLO 4	Describe Carrier Sense Multiple Access (CSMA), Carrier Sense Multiple Access with Collision Detection (CSMA/CD), Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).	PO 2, PO 3	3
BES002.05	CLO 5	Explain WLAN Topologies and Analyze Transmission Techniques	PO 1	3
BES002.06	CLO 6	Distinguish Random Access Methods.	PO 1	3
BES002.07	CLO 7	Describe importance of Wireless Local Area Networks.	PO 3	3
BES002.08	CLO 8	Explain Network Architecture and Analyze MAC Layer issues.	PO 1, PO 3	2
BES002.09	CLO 9	Describe importance of Wireless Private Area Networks.	PO 3, PO 6	2
BES002.10	CLO10	Explain Bluetooth technology and Bluetooth specifications.	PO 1, PO 6	3
BES002.11	CLO 11	Analyze Enhancements to Bluetooth technology and applications	PO 2	2
BES002.12	CLO 12	Describe IEEE 802.15.3, The IEEE 802.15.4	PO 2, PO 6	3
BES002.13	CLO 13	Understand ZigBee components and network topologies.	PO 2	2
BES002.14	CLO 14	Analyze Device architecture and network topologies	PO 3, PO 6	3

3 = High; 2 = Medium; 1 = Low2

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes		Program Outcomes(PO)					
(COs)	PO 1	PO 2	PO 3	PO 6			
CO 1	3	2	2				
CO 2	3	3	3				
CO 3	2		3				
CO 4	3	2	3	2			
CO 5		2	3	3			

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning		Program O	utcome(PO)	
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 6
CLO 1	3			
CLO 2	3	2		
CLO 3	3		3	
CLO 4		3	2	
CLO 5	2			
CLO 6	2			
CLO 7			3	
CLO 8	2		3	
CLO 9			3	3
CLO 10	3			3
CLO 11		2		
CLO 12		2		3
CLO 13		2		
CLO 14			2	3

3 = High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES -DIRECT:

CIE Exams	PO1, PO2, PO3, PO 6	SEE Exams	PO1, PO2, PO3, PO 6	Seminar and Term Paper	PO1, PO2, PO3, PO6
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

UNIT -I	WIRELESS SYSTEM&RANDOM ACCESS PROTOCOLS	Classes: 08
Introduction, F	irst and Second Generation Cellular Systems, Cellular Communications	from 1G to3G,
Wireless 4G sy	stems, The Wireless Spectrum; Random Access Methods: Pure ALOHA, S	lotted ALOHA,
Carrier Sense	Multiple Access (CSMA), Carrier Sense Multiple Access with Colli	ision Detection
(CSMA/CD), C	arrier Sense Multiple Access with Collision Avoidance (CSMA/CA).	
UNIT – II	WIRELESS LANS	Classes: 10
Introduction,	mportance of Wireless LANs, WLAN Topologies, Transmission Techniques	: Wired Networks
Wireless Netw	vorks, comparison of wired and Wireless LANs; WLAN Technologies: In	frared technology
UHF narrowb	and technology, Spread Spectrum technology.	
UNIT – II	I THE IEEE 802.11 STANDARD FOR WIRELESS LANS	Classes: 08
Network Arc	nitecture, Physical layer, The Medium Access Control Layer; MAC Lay	er issues: Hidder
Terminal Prob	lem, Reliability, Collision avoidance, Congestion avoidance, Congestion con	trol, Security, The
IFFF 802 11e		
1222 002.11C	MAC protocol.	
UNIT - IV		Classes: 10
UNIT - IV		
UNIT - IV Introduction,	WIRELESS PANS	ications, technica
UNIT - IV Introduction, overview, the	WIRELESS PANS importance of Wireless PANs, The Bluetooth technology: history and appl	 lications, technica ster-Slave Switch
UNIT - IV Introduction, overview, the Bluetooth sec	WIRELESS PANS importance of Wireless PANs, The Bluetooth technology: history and appl Bluetooth specifications, piconet synchronization and Bluetooth clocks, Ma	Lications, technica ster-Slave Switch and Inter Picone
UNIT - IV Introduction, overview, the Bluetooth sec	WIRELESS PANS importance of Wireless PANs, The Bluetooth technology: history and appl Bluetooth specifications, piconet synchronization and Bluetooth clocks, Ma surity; Enhancements to Bluetooth: Bluetooth interference issues, Intra	Lications, technica ster-Slave Switch and Inter Picone
UNIT - IV Introduction, overview, the Bluetooth sec scheduling, Bu UNIT -V	WIRELESS PANS importance of Wireless PANs, The Bluetooth technology: history and appl Bluetooth specifications, piconet synchronization and Bluetooth clocks, Ma surity; Enhancements to Bluetooth: Bluetooth interference issues, Intra ridge selection, Traffic Engineering, QoS and Dynamics Slot Assignment, Scat	ications, technica ster-Slave Switch and Inter Picone tter net formation. Classes: 09
UNIT - IV Introduction, overview, the Bluetooth sec scheduling, Br UNIT -V The IEEE 802	WIRELESS PANS importance of Wireless PANs, The Bluetooth technology: history and appl Bluetooth specifications, piconet synchronization and Bluetooth clocks, Ma eurity; Enhancements to Bluetooth: Bluetooth interference issues, Intra- ridge selection, Traffic Engineering, QoS and Dynamics Slot Assignment, Scat THE IEEE 802.15 WORKING GROUP FOR WPANS	ications, technica ster-Slave Switch and Inter Picone tter net formation. Classes: 09 etwork topologies

TEXT BOOKS:

- Carlos de Morais Cordeiro, Dharma Prakash Agrawal, "AdHoc and Sensor Networks", World Scientific, 2011.
- 2. Vijay K.Garg, "Wireless Communications and Networking", Morgan Kaufmann Publishers, 2009.

REFERENCES:

- 1. Kaveh Pahlaram, Prashant Krishnamurthy, "Wireless Networks", PHI, 2002.
- 2. Marks Ciampor, Jeorge Olenewa, "Wireless Communication", Cengage Learning, 2007.

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture	Tonia Outoomaa	Tania/a to be assured	Reference
No	Topic Outcomes	Topic/s to be covered	Kelerence
1-3	Understand and analyze first	Introduction, first and second generation	T1: 5.1, 5.2,
	and second generation	cellular systems, Cellular communications	R1: 1.7
	cellular systems.	from 1G to3G	
		Wireless 4G systems, The wireless	
		Spectrum	
4-6	Analyze Cellular	Random Access Methods: Pure ALOHA,	T1:6.1,6.2, 6.3,
	Communications from 1G to	Slotted ALOHA, Carrier Sense Multiple	T1: 6.4-6.6
	3G.	Access (CSMA), Carrier Sense Multiple	
		Access with Collision Detection	
		(CSMA/CD), Carrier Sense Multiple Access	
		with Collision Avoidance (CSMA/CA)	
7-9	Explain Wireless 4G systems,	Introduction, importance of Wireless LANs,	T1:6.4-6.6,
	The Wireless Spectrum.	WLAN Topologies, Transmission	T1:6.7-6.8, 6.15
		Techniques: Wired Networks, Transmission	R2:7.1, 8.1
		Techniques: Wireless Networks	
10-13	DescribeCarrier Sense	comparison of wired and Wireless LANs,	T1:7.1, 7.4
	Multiple Access (CSMA),	WLAN Technologies: Infrared technology,	T1:7.7, 7.8-7.10
	Carrier Sense Multiple	UHF narrowband technology	R2:7.2
	Access with Collision		
	Detection (CSMA/CD),		
	Carrier Sense Multiple		
	Access with Collision		
	Avoidance		
	(CSMA/CA).		
14-16	Explain WLAN Topologies	Spread Spectrum technology, Network	T1: 6.12, 9.4,9.6
	and analyze transmission	Architecture, Physical layer, The Medium	R2: 4.2,
	techniques	access control layer	

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
17-20	Describe importance of Wireless Local Area Networks.	MAC Layer issues: Hidden terminal problem, Reliability, Collision avoidance, congestion avoidance, Congestion control	T1: 7.12,10.4, R2: 4.2, T1: 10.6
21-22	Explain Network architecture and analyze MAC layer issues.	Security, The IEEE 802.11e MAC protocol. The IEEE 802.11e MAC protocol. Introduction, importance of wireless PANs, the Bluetooth technology: history and applications	T1: 10.5, T1: 8.1,8.2, 8.4,8.5,8.6 R2: 4.4
23-27	Describe importance of Wireless Private Area Networks.	Technical overview, the Bluetooth specifications, piconet synchronization and Bluetooth clocks, Master-Slave Switch, Bluetooth security	T1: 8.2,8.9 R2: 4.4,
28-36	Explain Bluetooth technology and Bluetooth specifications.	Enhancements to Bluetooth: Bluetooth interference issues, Intra and Inter Piconet scheduling, Bridge selection, Traffic Engineering,	T1: 8.12, 8.13, 8.14
37-40	Analyze Enhancements to Bluetooth	QoS and Dynamics Slot Assignment, Scatter net formation., The IEEE 802.15.3, The IEEE 802.15.4, ZigBee components and network topologies	T1: 9.1, 9.2,9.3
41-45	Describe IEEE 802.15.3, The IEEE 802.15.4	The IEEE 802.15.4 LR-WPAN device architecture, physical layer, data link layer, the network layer, applications, IEEE 802.15.3a ultra wideband.	R1:7.1,7.3 R1:7.4,7.7

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY /PROFESSIONAL REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Currently available Wireless Communication and Networks	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 6
2	Interfacing Modules	Work Shops/ Guest Lectures / NPTEL	PO 2, PO 6

Prepared By: Mr. M.Lakshmi Raviteja, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBEDDED PRORAMMING LABORATORY						
Course Code	BESB	BESB09					
Programme	M.Tec	M.Tech (ES)					
Semester	I ECE						
Course Type	Core						
Regulation	IARE -	R18					
	Lectures Tutorials Practical Credits						
	3 2						
Course Faculty	Mr. S.	Laksh	mana chari, Assis	tant Professor			

I. COURSE OVERVIEW:

This course provides knowledge of embedded C programming language. This covers the concepts for reading data from port pins of microcontroller, understanding the interfacing of data I/O devices, serial communication, and port on P89V51RD2 microcontroller. Through laboratory experiments and out-of-class assignments, students are provided learning experiences that enable them to provide in-depth knowledge about embedded processor, its hardware and software, explain programming concepts and embedded programming in C and assembly language and explain real time operating systems, inter-task communication and an embedded software development tool.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG		Ι	Microprocessors and Microcontrollers Laboratory	

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded Programming Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	CHALK & TALK	>	VIVA	×	ASSIGNMENTS	×	MOOCs	
~	LCD / PPT	×	SEMINARS	~	MINI PROJECT	×	VIDEOS	
×	OPEN ENDED EXPERIMENTS							

V. EVALUATION METHODOLOGY:

Ccontinuous internal assessment (CIA):

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, with 20 marks for day to day evaluation and 10 marks for Internal Examination (CIE).

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the this courses is contains 12 experiments. The question paper pattern is as follows: Two full questions with 'either' 'or' choice will be drawn from each set. Each set contains 4 questions.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 10 marks for Continuous Internal Examination (CIE), 20 marks for Day to Day Evaluation.

Component		Theory		
Type of Assessment	CIE Exam	Day to Day Evaluation	Total Marks	
CIA Marks	10	20	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exam shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration consisting of two sets.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern	3	Lab related
	tools in the field of Embedded Systems and sub areas IOT,		Exercises
	processor technology, and storage technology		
PO 2	Function on multidisciplinary environments by working	2	Lab related
	cooperatively, creatively and responsibly as a member of a team		Exercises /
			Mini projects
PO 3	Respond to global policy initiatives and meet the emerging	1	Lab related
	challenges with sustainable technological solutions in the field of		Exercises
	electronic product designing		
PO 4	Demonstrate the importance of embedded technologies and design	2	Lab related
	new innovative products for solving society relevant problems		Exercises
PO 6	Independently carry out research / investigation and development	2	Lab related
	work to solve practical problems		Exercises

3= High; 2 = Medium; 1 = Low

VII. COURSE OBJECTIVES:

The	The course should enable the students to:				
Ι	Use embedded C for reading data from port pins				
II	Understand the interfacing of data I/O devices with microcontroller.				
III	Understand serial communication and port RTOS on microcontroller.				

VIII. COURSE OUTCOMES (COs):

CO Code	CO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BESB09.01	CO 1	Ability to write the programs for LED blinking	PO 1, PO 3	2
		and to interface the devices like switch, buzzer and LCD with P89V51RD2.		
BESB09.02	CO 2	Ability to write the programs for interfacing of	PO 1, PO 2	3
		data I/O devices like seven segment display, keypad and RS232 with P89V51RD2.		
BESB09.03	CO 3	Ability to write the programs for interfacing	PO 4	2
		stepper motor and temperature sensor.	_	
BESB09.04	CO 4	Ability to understand real time operating systems,	PO 1, PO 3	2
		inter- task communication and analog to digital		
		conversions.		
BESB09.05	CO 5	Ability to write the programs for interfacing	PO 6	2
		digital to analog conversion and elevator.		

3= High; 2 = Medium; 1 = Low

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)							
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CO 1	3		1					
CO 2	3	2						
CO 3				2				
CO 4	3		1					
CO 5						2		

3= High; 2 = Medium; 1 = Low

X. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO 1, PO 3, PO 4	SEE Exams	PO 1, PO 3, PO 4	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2, PO 3, PO 4, PO 6	Student Viva	PO 3, PO 6,	Mini Project	PO 2	Certification	-
Term Paper	-						

XI. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS:

S No.	Experiment
1	Program to toggle all the bits of port P1 continuously with 250 ms delay.
2	Program to interface a switch and a buzzer to two different pins of a port such that the buzzer should sound as long as the switch is pressed.
3	Program to interface LCD data pins to port P1 and display a message on it.
4	Program to interface seven segment display.
5	Program to interface keypad. Whenever a key is pressed, it should be displayed on lcd.
6	Program to transmit message from microcontroller to PC serially using RS232. Program to receive a message from PC to microcontroller serially using RS232.
7	Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions.
8	Program to read data from temperature sensor and display the temperature value.
9	Program Port RTOS on to 89V51 Microcontroller and verify. Run 2 to 3 tasks simultaneously on 89V51 SDK. Use LCD interface, LED interface, Serial communication.
10	Program to convert analog signal into digital (ADC).
11	Program to convert digital into analog (DAC).
12	Program to interface Elevator.

XIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture	Learning Objectives	Topics to be covered
No.		
1-3	Over view of Micro controller architecture.	Open the micro controller P89V51RD2 kit box and study the architecture.
4-6	Understand the LED toggling.	Program to toggle all the bits of port P1
4-0	Understand the LED togginig.	continuously with 250 ms delay.
7-9	Understand the concepts of buzzer.	Program to interface a switch and a buzzer to two different pins of a port such that the buzzer should sound as long as the switch is pressed.
10-12	Understand the concept of LCD interfacing.	Program to interface LCD data pins to port P1 and display a message on it.
13-15	Understand seven segment display interface.	Program to interface seven segment display.
16-18	Understand the concept of keypad.	Program to interface keypad. Whenever a key is pressed, it should be displayed on lcd.
19-21	Understand the concept of serial communication.	Program to transmit message from microcontroller to PC serially using RS232. Program to receive a message from PC to microcontroller serially using RS232.
22-24	Understand the working principle of temperature sensor.	Program to interface Stepper Motor to rotate the motor in clockwise and anticlockwise directions.
25-27	Understand the working principle of temperature sensor.	Program to read data from temperature sensor and display the temperature value.
28-30	Understand the concepts of RTOS.	Program Port RTOS on to 89V51 Microcontroller and verify. Run 2 to 3 tasks simultaneously on 89V51 SDK. Use LCD interface, LED interface, Serial communication.

31-33	Understand ADC and DAC.	Program to convert analog signal into digital (ADC) and digital into analog (DAC).
34-36	Understand interface of elevator.	Program to interface Elevator.

Prepared by: Mr. S Lakshmana Chari

HOD, ECE

II SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBEDDE	EMBEDDED SYSTEM ARCHITECTURE					
Course Code	BESB11						
Programme	M.Tech						
Semester	Π	п					
Course Type	Core	Core					
Regulation	IARE-R18	IARE-R18					
	The	ory		Practical			
Course Structure	Lectures Tutorials Credits Laboratory Credits						
	3 - 3						
Course Faculty	Mr.K.Ravi, Assistant Professor						

I. COURSE OVERVIEW:

This course starts by introducing some basic ideas of embedded systems design paradigms, architectures. Subsequently the course covers important concepts like interpret possibilities and challenges, both with respect to software and hardware. In later units analysis of a system both as whole and in the included parts, to understand how these parts interact in the functionality and properties of the system.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BES003	Ι	Computer Architecture	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded System Architecture	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

	50 %	To test the objectiveness of the concept.
ſ	30 %	To test the analytical skill of the concept.
	20 %	To test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component	Th	Total Marks				
Type of Assessment	CIE Exam	Technical Seminar and Term Paper				
CIA Marks	25	05	30			

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and	3	Seminar and
	modern tools in the field of Embedded Systems and sub areas		Term Paper
	IoT, Processor technology, and Storage technology.		
PO 2	Function on multidisciplinary environments by working	2	Seminar and
	cooperatively, creatively and responsibly as a member of a		Guest Lectures
	team.		
PO 3	Respond to global policy initiatives and meet the emerging	3	Seminar and
	challenges with sustainable technological solutions in the field		Guest Lectures
	of electronic product designing.		
PO 6	Independently carry out research / investigation and	2	Guest Lecturers
	development work to solve practical problems.		

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understanding of fundamental embedded systems design paradigms, architectures.
Π	Interpret possibilities and challenges, both with respect to software and hardware.
III	Analyze a system both as whole and in the included parts, to understand how these parts interact in the functionality and properties of the system.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome		
CO 1	Describe different	CLO 1	Describe different Embedded system models,		
	Embedded system		embedded standards, block diagrams		
	models, ISA		Embedded board using von Neuman model.		
	architecture models.	CLO 2	Demonstrate EMBEDDED processors: ISA		
			architecture models, application specific ISA		
			models and general purpose ISA models.		
CO 2	Demonstrate Internal	CLO 3	Understand Internal processor design: ALU,		
	processor design: ALU,		registers, control unit, clock management		
	memory.	CLO 4	Identify different processor i/o, interrupts,		
			processor buses, processor performance		
CO 3	Distinguish different	CLO 5	Distinguish ROM, RAM, cache, auxiliary		
	memory managements.		memory, memory management.		
		CLO 6	Identify performance of Board buses:		

COs	Course Outcome	CLOs	Course Learning Outcome
			Arbitration and timing, PCI bus example,
			integrating bus with components.
CO 4	Describe Middleware	CLO 7	Understand Middleware and applications: PPP,
	and applications and		IP middleware UDP, Java. Application layer:
	layers.		FTP client, SMTP, HTTP server and client.
		CLO 8	Describe Application layer: FTP client, SMTP,
			HTTP server and client.
CO 5	Design and development	CLO 9	Design and development of architectural patterns
	architectural patterns and		and reference models.
	reference models.	CLO 10	Creating the architectural structures and evaluating
			the architecture, debugging testing, and maintaining.

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BES004.01	CLO 1	Understand the different Embedded system models, embedded standards, block diagrams Embedded board using von Neuman model.	PO 1	3
BES004.02	CLO 2	Identify different ISA architecture models, application specific ISA models and general purpose ISA models.	PO 1	2
BES004.03	CLO 3	Understand Internal processor design: ALU, registers, control unit, clock management.	PO 2	2
BES004.04	CLO 4	Distinguish different processor i/o, interrupts, processor buses, processor performance.	PO 2	2
BES004.05	CLO 5	Understand ROM, RAM, cache, auxiliarymemory,memory management.	PO 3	3
BES004.06	CLO 6	Identify performance of Board buses: Arbitration and timing, PCI bus example, integrating bus with components	PO 3	3
BES004.07	CLO 7	Understand Middleware and applications: PPP, IP middleware UDP, Java	PO 6	1
BES004.08	CLO 8	Describe Application layer FTP client, SMTP, HTTP server and client	PO 6	1
BES004.09	CLO 9	Describe Design and development of architectural patterns and reference models	PO 1, PO 6	2

BES004.10	CLO 10	Creating the architectural structures	PO 1, PO 6	2
		and evaluating the architecture,		
		debugging testing, and maintaining		

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (PO)						
Outcomes (COs)	PO 1	PO 2	PO 3	PO 6			
CO 1	2	1	1	1			
CO 2		1	1				
CO 3	1						
CO 4	2		1	1			
CO 5			3	1			

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Learning Outcomes	Program Outcomes (PO)						
(CLOs)	PO 1	PO 2	PO 3	PO 6			
CLO 1	3						
CLO 2	2						
CLO 3		2					
CLO 4		2					
CLO 5			2				
CLO 6			2				
CLO 7				1			
CLO 8				1			
CLO 9	3			2			
CLO 10	3	1 _ T		2			

3 = **High**; **2** = **Medium**; **1** = **Low**

XII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO1, PO2, PO3, PO6	SEE Exams	PO1, PO2, PO3, PO6		PO1, PO2, PO3, PO6
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	★ Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

UNIT I	INTRODUCTION TO EMBEDDED SYSTEMS	Class: 09				
Embedded system	n model, embedded standards, block diagrams, powering the hardwar	e: Embedded board				
using von Neum	using von Neuman model; EMBEDDED processors: ISA architecture models, application specific ISA					
models and gener	models and general purpose ISA models: Instruction level parallelism.					
UNIT II	PROCESSOR HARDWARE	Class: 09				
Internal processo	r design: ALU, registers, control unit, clock, on chip memory, proce	essor i/o, interrupts,				
processor buses, p	processor performance.					
UNIT III	SUPPORT HARDWARE	Class: 09				
Board memory: R	OM, RAM, cache, auxiliary memory, memory management, memory	performance.				
Board buses: Arb	itration and timing, PCI bus example, integrating bus with components,	, bus performance.				
UNIT IV	SOFTWARE	Class: 09				
Middleware and a	applications: PPP, IP middleware UDP, Java. Application layer: FTP c	lient, SMTP, HTTP				
server and client.						
UNIT V	ENGINEERING ISSUES OF SOFTWARE	Class: 09				
Design and devel	opment: architectural patterns and reference models: Creating the arch	nitectural structures,				
documenting the	documenting the architecture, analyzing and evaluating the architecture, debugging testing, and maintaining.					
TEXT BOOKS:						
1. Tammy Noergaard, "Embedded system architecture", Elsevier, 2006.Charles H. Roth Jr, Lizy Kurian.						
REFERENCES:						
	 Jean J. Labrosse, "Embedded Systems Building Blocks: Complete and Ready-To-Use Modules in C", the publisher Paul Temme, 2011. 					

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
1-3	Understand the basic concepts of Embedded system model, embedded standards	Introduction: Embedded system model, embedded standards, block diagrams powering the hardware: Embedded board using von Neuman model	T1:1.1, 1.2
4-6	Describe overall Embedded board using von Neuman model.	Powering the hardware: Embedded board using von Neuman model.	T1:2.1, R1:2.2
7-9	Understand the different ISA architecture models	EMBEDDED processors: ISA architecture models, application specific ISA models and general purpose ISA models: Instruction level parallelism.	T1:2.2, 2.3
10-13	Describe Internal processor design	Internal processor design: ALU, registers, control unit, clock	T1:4.1, 4.2, 4.3 R1:4.2
14-16	Implementing the concepts of processor.	On chip memory, processor i/o, interrupts, processor buses, processor performance.	T1:4.2, 4.4
17-20	Understand the concepts of different memories.	Board memory: ROM, RAM, cache, auxiliary memory, memory management, memory performance.	T1: 5.1, 5.2 R1:5.5,5.6
21-22	Describe the concepts of board buses.	Board buses: Arbitration and timing, PCI bus example, integrating bus with components, bus performance.	T1:6.1, 6.2, 6.4
23-27	Understand Middleware and applications.	Middleware and applications: PPP, IP middleware UDP, Java.	T1:7.2, 7.3, 7.4 R1:7.1,7.4,7.5
28-36	Describe Application layer and different clients.	Application layer: FTP client, SMTP, HTTP server and client.	T1:8.1, 8.3
37-40	Understand design and development of architectural patterns	Design and development: architectural patterns and reference models: Creating the architectural structures	T1:5.3 R1:5.2
41-45	Understanding the concept of architecture.	Documenting the architecture, analyzing and evaluating the architecture, debugging testing, and maintaining.	T1:5.5, 5.6, 5.7, R1:5.8

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Embeddedstandards, and Embedded block diagrams	Seminars / Guest Lectures / NPTEL	PO 1, PO 2, PO 6
2	Application layer: FTP client, SMTP	Work Shops/ Guest Lectures / NPTEL	PO 3, PO 6

Prepared By: Mr. K Ravi, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

Course TitleINTERNET OF THINGS (IoT)Course CodeBESB12ProgrammeM.Tech (ES)SemesterIICourse TypeCoreRegulationIARE - R18TheoryPractical

Tutorials

COURSE DESCRIPTOR

I. COURSE OVERVIEW:

Course Structure

Course Faculty

Lectures

3

Mr.K.Swathi, Assistant Professor

The Internet of Things is transforming our physical world into a complex and dynamic system of connected devices on an unprecedented scale. Advances in technology are making possible a more widespread adoption of IoT, from micro cameras to smart sensors that can asses crop conditions on a farm, to the smart home devices that are becoming increasingly popular.

Credits

3

Laboratory

4

Credits

2

The course covers the concepts of communication technologies, computer networks, cloud computing, and terms including the basic components of hardware and software. This course helps the students in gaining the knowledge about the sensor devices, different communication technologies like RFID, Bluetooth, and programming microcontroller for sending data to cloud.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BES201	Ι	Embedded System Architecture	3

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks	
Internet of Things 70 Marks		30 Marks	100	

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	>	Seminars	>	Videos	>	MOOCs
×	Open Ended Experimen	ts					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.	
30 %	To test the analytical skill of the concept.	
20 %	To test the application skill of the concept.	

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component	The		
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
CIA Marks	25	05	30

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IOT, processor technology, storage technology.	3	Seminars, Lab session
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	Seminar & Term paper
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminars, Lab session
PO 6	Independently carry out research / investigation and development work to solve practical problems.	3	Term paper
PO 7	Recognize the need to engage in lifelong learning through continuing education and research.	3	Term paper

3 = High; 2 = Medium; 1 = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Learn the basic issues, policy and challenges in the Internet of Things.
Π	Understand the components and the protocols in Internet of Things.
III	Understand the various modes of communications and build a small low cost embedded system with Internet of Things.
IV	Learn to manage the resources and deploy the resources into business.
V	Understand the cloud and internet environment.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Define IOT and understand building blocks of Internet of	CLO 1	Understand principles of Internet of Things (IoT).
	things and characteristics.	CLO 2	Understand the components of internet of things.
		CLO 3	Explain different communication technologies like
			RFID, Bluetooth, Zigbee, Wifi, Mobile internet etc.
CO 2	Understand the programming	CLO 4	Explain embedded communication software and
	of microcontroller for IOT		software partitioning.
CO 3	Understand the concepts of data synchronization and	CLO 5	Discuss device and router management.
	fundamental concepts of	CLO 6	Explain clustering and software agents.
	agility and autonomy.	CLO 7	Understand the concepts of data synchronization
			and fundamental concepts of agility and autonomy.
CO 4	Understand the meaning of	CLO 8	Understand the meaning of DiY and
	DiY and middleware		middleware technologies needed for DiY
	technologies needed for DiY		internet of things.
	internet of things.		en e

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 9	Explain the internet of things in context of EURIDICE.
		CLO 10	Understand ontology and apply ontology engineering in the internet of things
CO 5	Able to realize the set upof Cloud environment and	CLO 11	Explain set up of cloud environment and sending data from microcontroller to cloud.
	understand web enabling	CLO 12	Discuss case studies related to internet of things.
	constrained devices.	CLO 13	Identify common approaches used for future developments of IoT.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BES006.01	CLO 1	Understand principles of Internet of Things(IoT).	PO 1	3
BES006.02	CLO 2	Understand the components of internet of things.	PO 1	3
BES006.03	CLO 3	Explain different communication technologies like RFID, Bluetooth, Zigbee, Wifi, Mobile internet etc.	PO 1, PO 3	3
BES006.04	CLO 4	Explain embedded communication software and software partitioning .	PO 1	3
BES006.05	CLO 5	Discuss device and router management.	PO 1, PO 2	2
BES006.06	CLO 6	Explain clustering and software agents.	PO 1, PO 2	2
BES006.07	CLO 7	Understand the concepts of data synchronization and fundamental concepts of agility and autonomy.	PO 1, PO 2	3
BES006.08	CLO 8	Understand the meaning of DiY and middleware technologies needed for DiY internet of things.	PO 2, PO 3	3
BES006.09	CLO 9	Explain the internet of things in context of EURIDICE.	PO 2, PO 3	3
BES006.10	CLO 10	Understand ontology and apply ontology engineering in the internet of things	PO 3, PO 6	3
BES006.11	CLO 11	Explain set up of cloud environment and sending data from microcontroller to cloud.	PO 3, PO 6	2
BES006.12	CLO 12	Discuss case studies related to internet of things.	PO 6, PO 7	2
BES006.13	CLO 13	Identify common approaches used for future developments of IoT.	PO 6, PO 7	3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes (COs)		Program Outcomes (PO)				
	PO 1	PO 2	PO 3	PO 6	PO 7	
CO 1	3		3			
CO 2	3					
CO 3	2	3				
CO 4		1	3	2		
CO 5			2	3	3	

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning		Program	m Outcomes (P	PO)	
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 6	PO 7
CLO 1	3				
CLO 2	3				
CLO 3	3		3		
CLO 4	3				
CLO 5	2	3			
CLO 6	2	3			
CLO 7	2	3			
CLO 8		2	3		
CLO 9		2	3		
CLO 10			3	3	
CLO 11			3	2	
CLO 12				2	3
CLO 13				2	3

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO1, PO3, PO5	SEE Exams	PO1, PO3, PO5, PO 6	Seminar and Term Paper	PO1, PO2, PO3, PO7
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

UNIT I	INTRODUCTION	Class:09			
Definition	- phases - Foundations - Policy- Challenges and Issues - identification -	security – privacy.			
Componen	ts in internet of things: Control Units - Sensors - Communication modules	– Power Sources –			
Communic	ation Technologies – RFID – Bluetooth – Zigbee – Wifi – Rflinks – Mobil	e Internet – Wired			
Communic	ation.				
UNIT II	PROGRAMMING THE MICROCONTROLLER FOR IOT	Class:09			
Ecosystem	, embedded communications software, software partitioning, module and ta	sk decomposition:			
Partitioning	g case study , protocol software, debugging protocols, tables and other da	ta structures, table			
access rou	tines, buffer and timer management, management software, device and re-	outer management:			
CLI based	management and HTTP based management, agent to protocol interface, o	device to manager			
communic	ation, system setup, boot and post-boot configuration, saving and restoring th	e configuration.			
UNIT III	RESOURCE MANAGEMENT IN THE INTERNET OF THINGS	Class:09			
Clustering	- Software Agents - Data Synchronization - Clustering Principles in an	Internet of Things			
Architectu	re - The Role of Context - Design Guidelines -Software Agents	for Object. Data			
Synchroniz	ation- Types of Network Architectures - Fundamental Concepts	of Agility and			
Autonomy	Enabling Autonomy and Agility by the Internet of Things-Technical	Requirements for			
Satisfying	the New Demands in Production - The Evolution from the RFID-based I	EPCNetwork to an			
Agent base	dInternet of Things- Agents for the Behaviour of Objects.				
UNIT IV	BUSINESS MODELS FOR THE INTERNET OF THINGS	Class:09			
The Meani	ng of DiY in the Network Society- Sensor-actuator Technologies and Mide	dleware as a Basis			
for a DiY S	Service Creation Framework - Device Integration - MiddlewareTechnologies	Needed for a DiY			
36 P a g	e Internet of Things Semantic Interoperability as a Requirement for DiY C	reation -Ontology-			
Value Crea	tion in the Internet of Things-Application of Ontology Engineering in the	Internet of Things-			
Semantic Web-Ontology - The Internet of Things in Context of EURIDICE - Business Impact.					
UNIT V FROM THE INTERNET OF THINGS TO THE WEB OF THINGS Class:09					
Resource-oriented Architecture and Best Practices- Designing REST ful Smart Things - Web- enabling					
Constrained Devices - The Future Web of Things - Set up cloud environment - send data from					
microcontroller to cloud - Case studies - Open Source e-Health sensor platform - Be Close Elderly					
monitoring	– Other recent projects.				

TEXT BOOKS:

- 1. Charalampos Doukas, "Building Internet of Things with the Arduino", Create space, April 2002.
- 2. Dieter Uckelmann et.al, "Architecting the Internet of Things", Springer, 1st Edition, 2011.

REFERENCES:

1. Luigi Atzor et.al, "The Internet of Things: A survey, ", Journal on Networks, Elsevier Publications, October 2010.

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
1-3	Define IOT and understand the components of internet of things	Definition, phases, Foundations Policy, Challenges and issues, identification, security, privacy. Components in internet of things	T1:1.1, 1.5
4-6	DescribeCommunicationmodulesCommunicationTechnologies	Control units, sensors, communication modules, power sources, communication technologies	T1:2.7
7-9	Understand RFID, Bluetooth, Zigbee	RFID, Bluetooth, Zigbee, Wifi, Rflinks, mobile internet, wired communication.	T2:2.2, 2.3
10-13	Understand ecosystem and embedded communication software	Ecosystem, embedded communications software, software partitioning, module and task decomposition: Partitioning case study	T1:3.1, 3.2, 3.3
14-16	Define protocol software, debugging protocols, tables	Protocol software, debugging protocols, tables and other data structures, table access routines, buffer and timer management, management software	T1:4.2, 4.4
17-20	Understand the concepts of device and router management	Device and router management: CLI based management and HTTP based management, agent to protocol interface, device to manager communication, system setup, boot and post-boot configuration, saving and restoring the configuration	T2: 5.1, 5.2
21-22	Understand clustering software Agents and data synchronization	Clustering, software agents, data synchronization, clustering principles in an Internet of Things architecture, the role of context design guidelines, software agents for object	T2:6.1, 6.2, 6.4
23-27	Define Types of Network Architectures - Fundamental Concepts of Agility.	Data synchronization, types of network Architectures, fundamental concepts of agility and autonomy enabling by the	T2:7.2, 7.3, 7.4

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
		Internet of Things, technical requirements	
		for satisfying the new demands in	
		production, the evolution from the RFID-	
		based EPC Network to an agent based	
		Internet of Things, agents for the behaviour	
		of objects.	
28-32	Understand the Meaning of DiY	The meaning of DiY in the network society,	T1:8.1,
	in the Network Society- Sensor-	Sensor actuator technologies and	8.3
	actuator Technologies	Middleware as a basis for a DiY service	
		creation framework, Device Integration,	
		Middleware Technologies needed for a DiY	
32-36	Understand application of	Interoperability as a requirement for DiY	T1:8.1,
	Ontology Engineering in the	creation, Ontology, value creation in the	8.3
	Internet of Things	Internet of Things, application of Ontology	
		engineering in the Internet of Things,	
		semantic web, Ontology, the Internet of	
		Things in context of EURIDICE business	
		impact.	
37-40	Demonstrate resource-oriented	Resource oriented architecture and best	T1:8.6
	Architecture	practices designing REST full smart things,	
		web enabling constrained devices	
41-45	Demonstrate Set up cloud	The future web of things, set up cloud	T1:8.8,
	environment – send data from	environment, send data from	8.9
	microcontroller to cloud	microcontroller to cloud, case studies, open	
		source e-Health sensor platform, be close	
		elderly monitoring, other recent projects	

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Real time implementation of	Application oriented Projects and	PO 2, PO 3, PO 6
	simple modules using IoT.	Seminars	
2	Program modelling	Seminars / Guest Lectures /	PO 1, PO 6, PO 7
		NPTEL	

(Autonomous)

Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	MICROCONTROLLERS FOR EMBEDDED SYSTEM DESIGN					
Course Code	BESB1	6				
Programme	M.Tech	(ES)			
Semester	II ECE					
Course Type	Elective					
Regulation	IARE - R	18				
			Theory		Practic	al
Course Structure	Lectures Tutorials Credits Laboratory (Credits	
	3		-	3	-	-
Course Faculty	Mrs. G.Mary swarna latha, Assistant Professor					

I. COURSE OVERVIEW:

This course provides the basic knowledge over the hardware units and devices for design of embedded systems. It also provides the information about the architectures of embedded RISC processors and system on chip processor design of embedded systems. This course is intended to Analyze interrupt latency, context switching time, for development of device drives for timing devices.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BESB01	Ι	Embedded System Design	3
PG	BESB06	Ι	Principles of Distributed Embedded Systems	3

III. MARKSDISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Microcontrollers for embedded system design	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	>	Seminars	~	Videos	~	MOOCs
×	Open Ended Experimen	its					

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make- examination.

Semester End Examination (SEE): The SEE shall be conducted for 70 marks of 3 hours duration. The syllabus for the theory courses shall be divided into FIVE units and each unit carries equal weight age in terms of marks distribution. The question paper pattern shall be as defined below. Two full questions with 'either' 'or' choice will be drawn from each unit. Each question carries 14 marks. There could be a maximum of three sub divisions in a question.

50 %	To test the objectiveness of the concept.
30 %	To test the analytical skill of the concept.
20 %	To test the application skill of the concept.

The emphasis on the questions is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component	Theory			
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks	
CIA Marks	25	5	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations are conducted during I year II semester and a term paper with overview of topic is to be prepared. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IOT, processor technology, and storage technology	2	Term paper, Seminar
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team	2	Term paper, Seminar
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing	3	Term paper
PO 6	Independently carry out research / investigation and development work to solve practical problems	2	Term paper, Seminar

3= High; 2 = Medium; 1 = Low

VII. COURSE OBJECTIVES:

The co	ourse should enable the students to:
Ι	Understand hardware units and devices for design of embedded systems.
II	Use architectures of embedded RISC processors and system on chip processor design of embedded systems.
III	Analyze interrupt latency, context switching time, for development of device drives for timing devices.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Ability to understand embedded hardware and	CLO 1	Understand principles of embedded systems design and their classification.
	software and how this applies to design of	CLO 2	Understand processor embedded into a system.
	embedded system.	CLO 3	Explain embedded hardware units and devices in system.
		CLO 4	Understand concept of embedded software and issues in designing complex system.
		CLO 5	Discuss design process in embedded system.
		CLO 6	Explain formalization of system design.
CO 2	Describe the architecture of 8051 and PIC controller.	CLO 7	Understand key concepts of 8051 architecture, input/output ports and circuits, external memory, counters and timers.
		CLO 8	Understand key concepts of PIC controllers, memory interfacing, I/O devices.
		CLO 9	Learn memory controller and memory arbitration schemes.
CO 3	Understand the PSOC architecture and	CLO 10	Acquire the knowledge on Programmable system on chip architectures.
	instruction set of ARM processor in thumb mode.	CLO 11	Understand key concepts of continuous timer blocks, switched capacitor blocks, I/O blocks, digital blocks and programming of PSOC.
		CLO 12	Distinguish between Embedded CISC and RISC processor architecture.
		CLO 13	Explain ARM processor architecture, registers set, and modes of operation and overview of Instructions.
CO 4	Understand the exceptions, interrupt handling schemes and device driver.	CLO 14	Understand and apply Exceptions and Interrupt handling Schemes, Context and periods for context switching in embedded system design.
		CLO 15	Understand and apply Exceptions and Interrupt handling Schemes, Context and periods for context switching in embedded system design.
		CLO 16	Explain Device driver using interrupt service routine.
		CLO 17	Understand serial port device driver and device drivers for internal programmable timing devices.
CO 5	Acquire knowledge in serial communication and	CLO 18	Explain the need of Serial communication protocols and Ethernet protocols.
	Ethernet protocols.	CLO 19	Understand SDMA, Channel and IDMA.
		CLO 20	Explain the necessity of external bus interface.

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes (COs)	Program Outcomes(PO)						
	PO 1	PO 2	PO 3	PO 6			
CO 1	2	2	3	2			
CO 2	2	2	3				
CO 3	2	2					
CO 4	2	2		2			
CO 5		2	3				

X. COURSE LEARNING OUTCOMES (CLOs):

		At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BESB16.01	CLO 1	Understand principles of embedded systems design and their classification.	PO1	2
BESB16.02	CLO 2	Understand processor embedded into a system.	PO1	2
BESB16.03	CLO 3	Explain embedded hardware units and devices in system.	PO1	2
BESB16.04	CLO 4	Understand concept of embedded software and issues in designing complex system.	PO1 PO6	2
BESB16.05	CLO 5	Discuss design process in embedded system.	PO1 PO2	2
BESB16.06	CLO 6	Explain formalization of system design.	PO3	3
BESB16.07	CLO 7	Understand key concepts of 8051 architecture, input/output ports and circuits, external memory, counters and timers.	PO3	3
BESB16.08	CLO 8	Understand key concepts of PIC controllers, memory interfacing, I/O devices.	PO1	2
BESB16.09	CLO 9	Learn memory controller and memory arbitration schemes.	PO1 PO2	2
BESB16.10	CLO 10	Acquire the knowledge on Programmable system on chip architectures.	PO1 PO2	2
BESB16.11	CLO 11	Understand key concepts of continuous timer blocks, switched capacitor blocks, I/O blocks, digital blocks and programming of PSOC.	PO1	2
BESB16.12	CLO 12	Distinguish between Embedded CISC and RISC processor architecture.	PO1	2
BESB16.13	CLO 13	Explain ARM processor architecture, registers set, and modes of operation and overview of Instructions.	PO1	2
BESB16.14	CLO 14	Understand and apply Exceptions and Interrupt handling Schemes, Context and periods for context switching in embedded system design.	PO3	3
BESB16.15	CLO 15	Understand and apply Exceptions and Interrupt handling Schemes, Context and	PO1	2

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
		periods for context switching in embedded system design.		
BESB16.16	CLO 16	Explain Device driver using interrupt service routine.	PO1	2
BESB16.17	CLO 17	Understand serial port device driver and device drivers for internal programmable timing devices.	PO3 PO6	3
BESB16.18	CLO 18	Explain the need of Serial communication protocols and Ethernet protocols.	PO3	3
BESB16.19	CLO 19	Understand SDMA, Channel and IDMA.	PO2 PO3	3
BESB16.20	CLO 20	Explain the necessity of external bus interface.	PO3	3

3= High; 2 = Medium; 1 = Low

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES AND PROGRAM SPECIFIC OUTCOMES:

CLOs	POs								
	PO1	PO2	PO3	PO4	PO5	PO6	PO7		
CLO 1	3								
CLO 2	2								
CLO 3	2								
CLO 4	2					2			
CLO 5	2	2							
CLO 6			3						
CLO 7			3						
CLO 8	2								
CLO 9	2	2							
CLO 10	2	2							
CLO 11	2								
CLO 12	2								
CLO 13	2								
CLO 14			3						
CLO 15	2								
CLO 16	2								
CLO 17			3			2			
CLO 18			3						

CLO	POs							
CLOs	PO1	PO2	PO3	PO4	PO5	PO6	PO7	
CLO 19		2	3					
CLO 20			3					

XII. ASSESSMENT METHODOLOGIES-DIRECT:

CIE Exams	PO 1, PO 2 PO 3, PO 6	SEE Exams	PO 1, PO 2 PO 3, PO 6	Assignments	PO 2	Seminars	PO 3
Laboratory Practices	-	Student Viva	-	Mini Project	-	Certification	-
Term Paper	PO 6						

XIII. ASSESSMENT METHODOLOGIES-INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

MODULE -I INTRODUCTION TO EMBEDDED SYSTEMS	Classes: 09
Overview of embedded systems, processor embedded into a system, embedd and devices in system, embedded software, complex system design, design pr system, formalization of system design, classification of embedded systems.	
MODULE - II MICROCONTROLLERS	Classes: 09
8051 architecture, input/output ports and circuits, external memory, counter controllers; Interfacing processor 8051, PIC, memory interfacing, I/O controller and memory arbitration schemes.	
MODULE - III EMBEDDED RISC PROCESSORS	Classes: 09
Programmable system on chip architectures, continuous timer blocks, switche I/O blocks, digital blocks, programming of PSOC. Embedded RISC processor architecture, ARM processor architecture, regis operation and overview of Instructions	•
MODULE - IV INTERRUPTS AND DEVICE DRIVERS	Classes: 09
Exceptions and Interrupt handling Schemes, Context and periods for context switt interrupt latency; Device driver using interrupt service routine, serial port device drive for internal programmable timing devices.	-
MODULE - V NETWORK PROTOCOLS	Classes: 09
Serial communication protocols, Ethernet protocol, SDMA, Channel and IDMA, exter	nal bus interface.
Text Books:	
Raj Kamal, "Embedded Systems, Architecture Programming and Design	n", Tata Mc Graw

Hill, 2 nd Edition, 2008.

Muhammad Ali Mazidi, Rolin D. Mckinaly, Danny Causy, "PIC Microcontroller and Embedded Systems", Pearson Education, 1st Edition, 2008. 44.

Robert Ashpy, "Designers Guide to the Cypress PSOC", Elsevier, 1st Edition, 2005.

Reference Books:

Jonathan W. Valvano – Brookes / Cole, "Embedded Microcomputer Systems, Real Time Interfacing", Thomas Learning, 1st Edition, 1998.

Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM Systems Developers Guides, Design & Optimizing System Software", Elsevier, 1st Edition, 2004.

John B. Peatman, "Designing with PIC Microcontrollers", PH Inc, 1st Edition, 1998.

XV. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No.	Topics to be covered	CLOs	Reference
1.	Introduction	CLO 1	T1: 1.1.1
2.	Overview of embedded systems	CLO 1	T1: 1.1.2
3.	Processor embedded into a system		T1: 1.2
4.	Embedded hardware units and devices in system	CLO 1	T1: 1.3
5.	Embedded software	CLO 8	T1: 1.4
б.	Complex system design	CLO 5	T1: 1.7
7.	Design process in embedded system	CLO 5	T1: 1.8
8.	Formalization of system design	CLO 6	T1: 1.9
9.	Classification of embedded systems	CLO 5	T1: 1.11
10.	8051 architecture	CLO 6	T1: 2.1.1
11.	Input/output ports and circuits	CLO 5	T1: 2.1.3
12.	External memory	CLO 7	T1: 2.1.4
13.	Counters and timers	CLO 7	T1: 2.1.5
14.	PIC controllers	CLO 2	T2: 1.2
15.	Interfacing processor 8051	CLO 8	T1: 2.1.6
16.	PIC, memory interfacing	CLO 8	T2: 2.1
17.	I/O devices	CLO 9	T2: 2.2
18.	Memory controller	CLO 10	T2: 2.3
19.	Memory arbitration schemes	CLO 11	T1: 2.4
20.	Programmable system on chip architectures	CLO 11	T3:1.1
21.	Continuous timer blocks,	CLO 11	T3:1.2
22.	Switched capacitor blocks	CLO 14	T3:2.4
23.	I/O blocks, digital blocks,	CLO 16	T3:2.5
24.	Programming of PSOC.	CLO 18	T3:3.1
25.	Embedded RISC processor architecture	CLO 16	T1: 2.3.1
26.	ARM processor architecture,	CLO 18	T1: 2.3.3
27.	Registers set	CLO 16	T1: 2.3.3
28.	Modes of operation and overview of Instructions	CLO 15	T1: 2.3.3
29.	Exceptions and Interrupt handling Schemes.	CLO 15	T1: 4.4
30.	Exceptions and Interrupt handling Schemes.	CLO 15	T1: 4.4
31.	Context and periods for context switching,	CLO 15	T1: 4.6
32.	Context and periods for context switching,	CLO 14	T1: 4.6
33.	Deadline and interrupt latency	CLO 14	T1: 4.6
34.	Device driver using interrupt service routine	CLO 15	T1: 4.9

Lecture No.	Topics to be covered	CLOs	Reference
35.	Serial port device driver	CLO 17	T1: 4.9.4
36.	Device drivers for internal programmable timing devices.	CLO 18	T1: 4.9.5
37.	Device drivers for internal programmable timing devices.	CLO 18	T1: 4.9.5
38.	Serial communication protocols,	CLO 18	T1: 3.10.1
39.	Serial communication protocols	CLO 18	T1: 3.10.2
40.	Ethernet protocol	CLO 18	T1: 3.10.3
41.	Ethernet protocol	CLO 13	T1: 3.10.4
42.	SDMA,	CLO 13	T1: 3.10.5
43.	Channel	CLO 13	T1: 3.10.6
44.	IDMA	CLO 12	T1: 3.11
45.	External bus interface	CLO 20	T1: 3.12

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance With POs
1	Design examples of embedded system.	Project	PO 1, PO 2, PO 3
2	Program modelling	Seminars / Guest Lectures / NPTEL	PO 2,PO 3, PO 6
3	Case studies of different embedded system applications.	Seminars / Guest Lectures / NPTEL	PO 1, PO 3,PO6

Prepared by: Ms. G Mary Swarna Latha, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMB	EMBEDDED SYSTEM LABORATORY				
Course Code	BESB	19				
Programme	M.Teo	ch (E	S)			
Semester	Π	II ECE				
Course Type	Core	Core				
Regulation	IARE -	R18				
	Lect	Lectures Tutorials Practical Credits				
	3 2					
Course Faculty	Mrs. 0	Mrs. G.Mary swarna latha, Assistant Professor				

I. COURSE OVERVIEW:

This course provides knowledge of Embedded System Lab. This covers the concepts for reading data from port pins of microcontroller, the interfacing of LED, KEYPAD and various motors to ARM7 (LPC2148). Along with this interfacing amplifiers, filters, converters, ALU operations and PSOC (CY8C29466, 24X1).

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BES101	Ι	Embedded Programming Laboratory	2

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded System Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

×	CHALK & TALK	~	VIVA	×	ASSIGNMENTS	×	MOOCs
~	LCD / PPT	×	SEMINARS	~	MINI PROJECT	×	VIDEOS
×	OPEN ENDED EXPERIMENTS						

V. EVALUATION METHODOLOGY:

Continuous Internal Assessment (CIA):

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, with 20 marks for day to day evaluation and 10 marks for Internal Examination (CIE).

Semester End Examination (SEE):

The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the this courses is contains 12 experiments. The question paper pattern is as follows: Two full questions with 'either' 'or' choice will be drawn from each set. Each set contains 4 questions.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 10 marks for Continuous Internal Examination (CIE), 20 marks for Day to Day Evaluation.

Component		Theory		
Type of Assessment	CIE Exam	Day to Day Evaluation	Total Marks	
CIA Marks	10	20	30	

Table 1:	Assessment	pattern	for	CIA
----------	------------	---------	-----	-----

Continuous Internal Examination (CIE):

Two CIE exam shall be conducted at the end of the 16^{th} week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration consisting of two sets.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of embedded systems and sub areas IOT, processor	3	Lab related Exercises
PO 2	technology, and storage technology Function on multidisciplinary environments by working		Lab related
	cooperatively, creatively and responsibly as a member of a team	2	Exercises
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing	3	Lab related Exercises
PO 4	Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems	3	Lab related Exercises
PO 6	Independently carry out research / investigation and development work to solve practical problems	3	Lab related Exercises
PO 7	Recognize the need to engage in lifelong learning through	2	Lab related
	continuing education and research		Exercises

3= High; 2 = Medium; 1 = Low

VII. COURSE OBJECTIVES (COs):

The co	The course should enable the students to:			
Ι	Use embedded C for reading data from port pins.			
II	Understand the interfacing of data I/O devices with microcontroller.			
III	III Understand serial communication, port RTOS on microcontroller			

VIII. COURSE OUTCOMES (COs):

CO Code	CO's	At the end of the course, the student will have the ability to:	PO's Mapped	Strength of Mapping
BESB19.01	CO 1	Ability to write the programs for LED blinking and to interface the devices like LCD and KEYPAD with ARM7 (LPC2148).	PO 1, PO3 PO 6, PO7	2
BESB19.02	CO 2	Ability to write the programs for interfacing of I/O devices like MOTORS, LED with ARM7 (LPC2148).	PO 1, PO 3 PO 4, PO6 PO7	3
BESB19.03	CO 3	Ability to write the programs for interfacing programmable gain amplifier, study of various characteristics of Filters with PSOC (CY8C29466, 24X1).	PO 1, PO 2 PO 3, PO 4 PO 6, PO7	2
BESB19.04	CO 4	Ability to write the programs for interfacing converters, digital functions with PSOC (CY8C29466, 24X1).	PO 1, PO 2 PO 3, PO 4 PO 6, PO7	3
BESB19.05	CO 5	Ability to write the programs to do ALU operations and timing operations by interfacing PSOC (CY8C29466, 24X1).	PO 1, PO 2 PO 3, PO 4 PO 6, PO7	3

3= High; 2 = Medium; 1 = Low

IX. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (POs)								
Outcomes (COs)	PO1	PO2	PO3	PO4	PO6	PO7			
CO 1	3		2		2	2			
CO 2	2		3	3	2	3			
CO 3	3	2	2	3	2	2			
CO 4	3	3	2	2	3	2			
CO 5	3	2	3	2	3	2			

3= High; 2 = Medium; 1 = Low

X. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO 1, PO 3, PO 4	SEE Exams	PO 1, PO 3, PO 4	Assignments	-	Seminars	-
Laboratory Practices	PO 1, PO 2, PO 3, PO 6	Student Viva	PO 1, PO 2, PO 3, PO 4 , PO 6	Mini Project	PO 6, PO 7	Certificatio n	-
Term Paper	-						

XI. ASSESSMENT METHODOLOGIES – INDIRECT:

~	Early Semester Feedback	>	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XII. SYLLABUS:

S No.	Experiment
1	Program to toggle all the led to port and with some time delay.
2	Program to Interface LCD to ARM7 and display message on screen.
3	Program to Interface keypad with ARM7.
4	Program to Interface LED with ARM7.
5	Program to Stepper motor interfacing with ARM7.
6	Program to Interface DC motor with ARM7.
7	Program to implement Study and characterization of the Programmable Gain Amplifier (PGA): Gain
	bandwidth Product through PSOC.
8	Program to implement Low pass, High pass and Band pass filters and their characterization using
	PSOC.
9	Program to do Experiments with on-chip ADC's and DAC's using PSOC.
10	Program to implement Digital Function Implementation using Digital Blocks.
	a. Timer experiment
	b. Counter for blinking LED
	c. PWM experiment
	d. Digital buffer and digital inverter USING PSOC.
11	Program to implement Logical/Arithmetic functions using PSOC Microcontroller.
12	Program to implement Timer operation in different Modes using PSOC

XIII. COURSE PLAN:

The course plan is meant as a guideline. Probably there may be changes.

Lecture No	Learning Objectives	Topics to be covered
1-3	Over view of Micro controller architecture.	Open the micro controller kit box and study the architecture.
4-6	Understand the LED blinking.	Program to toggle all the led to port and with some time delay.
7-9	Understand the concepts of LCD.	Program to Interface LCD to ARM7 and display message on screen.
10-12	Understand the keypad structure.	Program to Interface keypad with ARM7.
13-15	Understand the design LED.	Program to Interface LED with ARM7.
16-18	Understand the design of stepper motor.	Program to Stepper motor interfacing with ARM7.
19-21	Understand the design of DC motor.	Program to Interface DC motor with ARM7.
22-24	Understand the characteristics of programmable gain amplifier.	Program to implement Study and characterization of the Programmable Gain Amplifier (PGA): Gain bandwidth Product through PSOC.
25-27	Understand the concepts of filters.	Program to implement Low pass, High pass and Band pass filters and their characterization using PSOC.
28-30	Understand the functionality ADC and DAC.	Program to do Experiments with on-chip ADC's and DAC's using PSOC.
31-33	Understand digital function implementation.	Program to implement Digital Function Implementation using Digital Blocks.

		 a. Timer experiment b. Counter for blinking LED c. PWM experiment d. Digital buffer and digital inverter USING PSOC.
34-36	Understand ALU operation and timers.	Program to implement Logical/Arithmetic functions using PSOC Microcontroller.
37-39	Understand timer operation.	Program to implement Timer operation in different Modes using PSOC
40-42	Internal Lab Exam	CIE-I

Prepared by: Ms. G Mary Swarna Latha, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	INTERNET OF	INTERNET OF THINGS LABORATORY						
Course Code	BESB20	BESB20						
Programme	M.Tech (ES)	M.Tech (ES)						
Semester	II	П						
Course Type	Core	Core						
Regulation	IARE - R18							
		Theory		Prac	ctical			
Course Structure	Lectures Tutorials Credits Laboratory Credits							
	4 2							
Course Faculty	Mr.K.Swathi, Assistant Professor							

I. COURSE OVERVIEW:

The Internet of Things is transforming our physical world into a complex and dynamic system of connected devices on an unprecedented scale. Advances in technology are making possible a more widespread adoption of IoT, from micro cameras to smart sensors that can asses crop conditions on a farm, to the smart home devices that are becoming increasingly popular.

The course covers the concepts of communication technologies, computer networks, cloud computing, and terms including the basic components of hardware and software. This course helps the students in gaining the knowledge about the sensor devices, different communication technologies like RFID, Bluetooth, and programming microcontroller for sending data to cloud.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BES201	Ι	Embedded System Architecture	3

III. MARKS DISTRIBUTION

Subject	SEE Examination	CIA Examination	Total Marks
Internet of Things Laboratory	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	pen Ended Experiments						

EVALUATION METHODOLOGY: V.

Each laboratory will be evaluated for a total of 100 marks consisting of 30 marks for internal assessment and 70 marks for semester end lab examination. Out of 30 marks of internal assessment, continuous lab assessment will be done for 20 marks for the day to day performance and 10 marks for the final internal lab assessment.

Semester End Examination (SEE): The semester end lab examination for 70 marks shall be conducted by two examiners, one of them being Internal Examiner and the other being External Examiner, both nominated by the Principal from the panel of experts recommended by Chairman, BOS.

1	
20 %	To test the preparedness for the experiment.
20 %	To test the performance in the laboratory.
20 %	To test the calculations and graphs related to the concern experiment.
20 %	To test the results and the error analysis of the experiment.
20 %	To test the subject knowledge through viva – voce.

The emphasis on the experiments is broadly based on the following criteria:

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 20 marks for continuous lab assessment during day to day performance, 10 marks for final internal lab assessment.

	IA			
Component	Labo	Laboratory		
Type of Assessment	Day to day performance	Final internal lab assessment	Total Marks	
CIA Marks	20	10	30	

Table 1: Assessment pattern for	or CIA
---------------------------------	--------

Continuous Internal Examination (CIE):

One CIE exams shall be conducted at the end of the 16th week of the semester. The CIE exam is conducted for 10 marks of 3 hours duration.

Preparation	Performance	Calculations and Graph	Results and Error Analysis	Viva	Total
2	2	2	2	2	10

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern	3	Lab related
	tools in the field of Embedded Systems and sub areas IOT,		Exercises
	processor technology, storage technology.		
PO 2	Function on multidisciplinary environments by working	2	Lab related
	cooperatively, creatively and responsibly as a member of a team.		Exercises/Mini
			projects
PO 3	Respond to global policy initiatives and meet the emerging	3	Lab related
	challenges with sustainable technological solutions in the field of		Exercises
	electronic product designing.		
PO 6	Independently carry out research / investigation and development	3	Lab related
	work to solve practical problems.		Exercises
PO 7	Recognize the need to engage in lifelong learning through	3	Lab related
	continuing education and research.		Exercises
	3 = High; 2 = Medium; 1 = Low		

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand the IoT using Arduino programming.
II	Understand the interfacing of data I/O devices with Arduino.
III	Understand the design steps using Rasberry Pi.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome			
CO 1	Understand the design of IOT with arduino and	CLO 1	Design and develop IOT with arduino programming			
	android.	CLO 2	Understand the Controlling RGB LED using Arduino and Wi-Fi Module.			
		CLO 3	Understand the Programming for Internet of thing with Android and Arduino			
CO 2	Understand the programming of Bluetooth modules with various applications.	CLO 4	Understand the Programming for how to interface HC-05 Bluetooth Module with Arduino UNO for various application			
CO 3	Understand the concepts of interface temperature with	CLO 5	Understand the Interface Temperature sensor and Monitoring using IoT with Arduino Uno and display			
	android.	CLO 6	Understand the to Interface IR sensors and Blue tooth for detecting obstacle using Arduino with android.			

COs	Course Outcome	CLOs	Course Learning Outcome
		CLO 7	Understand the Programming for Node MCU for track location without using GPS module and
			fundamental concepts of agility and autonomy.
CO 4	Understand the Wi-Fi module	CLO 8	Analyze how to send data from Arduino to
	using Raspberry pi to connect		Webpage using Wi-Fi module
	devices.	CLO 9	Analyze Internet of things (IoT) by using a
			Raspberry Pi to connect devices.
		CLO 10	Develop and design how to Setup Wi-Fi on
			Raspberry Pi 2 using USB Dongle
CO 5	Understand the development	CLO 11	Develop and interface a motion sensor to use
	of motion sensor using		GPIO pins with a Raspberry Pi.
	Arduino and IoT.	CLO 12	Develop and design interface Gas sensor for detection and monitoring using Arduino and IoT.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BESB20.01	CLO 1	Design and develop IOT with arduino programming	PO 1	3
BESB20.02	CLO 2	Understand the Controlling RGB LED using Arduino and Wi-Fi Module	PO 1	3
BESB20.03	CLO 3	Understand the Programming for Internet of things with Android and Arduino	PO 1, PO 3	3
BESB20.04	CLO 4	Understand the Programming for how to interface HC-05 Bluetooth Module with Arduino UNO for various application	PO 1	3
BESB20.05	CLO 5	Understand the Interface Temperature sensor and Monitoring using IoT with Arduino Uno and display digital value on LCD.	PO 1, PO 2	2
BESB20.06	CLO 6	Understand the to Interface IR sensors and Blue tooth for detecting obstacle using Arduino with android Application.	PO 1, PO 2	2
BESB20.07	CLO 7	Understand the Programming for Node MCU for track location without using GPS module	PO 1, PO 2	3
BESB20.08	CLO 8	Analyze how to send data from Arduino to Webpage using Wi-Fi module	PO 2, PO 3	3
BESB20.09	CLO 9	Analyze Internet of things (IoT) by using a Raspberry Pi to connect devices.	PO 2, PO 3	3

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BESB20.10	CLO 10	Develop and design how to Setup Wi-Fi on Raspberry Pi 2 using USB Dongle	PO 3, PO 6	3
BESB20.11	CLO 11	Develop and interface a motion sensor to use GPIO pins with a Raspberry Pi.	PO 3, PO 6	2
BESB20.12	CLO 12	Develop and design interface Gas sensor for detection and monitoring using Arduino and IoT	PO 6, PO 7	2

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course	Program Outcomes (PO)						
Outcomes (COs)	PO 1	PO 2	PO 3	PO 6	PO 7		
CO 1	3		3				
CO 2	3						
CO 3	2	3					
CO 4		1	3	2			
CO 5			2	3	3		

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning Outcomes		Program Outcomes (PO)						
(CLOs)	PO 1	PO 2	PO 3	PO 6	PO 7			
CLO 1	3							
CLO 2	3							
CLO 3	3		3					
CLO 4	3							
CLO 5	2	3						
CLO 6	2	3						
CLO 7	2	3						
CLO 8		2	3					
CLO 9		2	3					
CLO 10			3	3				
CLO 11			3	2				

Course Learning Outcomes		Program	n Outcomes (P	0)	
(CLOs)	PO 1	PO 2	PO 3	PO 6	PO 7
CLO 12				2	3

3 = High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO1, PO3, PO5	SEE Exams	PO1, PO3, PO5, PO 6	Seminar and Term Paper	-
Viva	-	Mini Project	-	Laboratory Practices	PO1, PO2, PO3, PO7

XIII. ASSESSMENT METHODOLOGIES - INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback		
×	Assessment of Mini Projects by Experts				

XIV. SYLLABUS:

LIST OF EXPERIMENTS						
Week-1	IOT WITH ARDUINO PROGRAMMING					
Introduction to Internet of Things (IoT) using Arduino programming						
Week-2	CONROLLING RGB LED					
Programming for	Controlling RGB LED using Arduino and Wi-Fi Module					
Week-3	IOT TO CONTROL REMOTE LED					
Programming for LED	Internet of things with Android and Arduino. Build an Arduino IoT to control a remote					
Week-4	INTERFACING BLUETOOTH MODULE					
Programming for	how to interface HC-05 Bluetooth Module with Arduino UNO for various application					
Week-5	INTERFACING TO TEMPERATURE SENSOR					
Programming to digital value on I						
Week-6	INTERFCAING IR SENSOR					
Programming to Application.	Interface IR sensors and Blue tooth for detecting obstacle using Arduino with android					
Week-7	TRACK LOCATION					
Programming for	Node MCU for track location without using GPS module					
Week-8	SEND DATA FROM ARDUINO TO WEB PAGE					
Programming for	how to send data from Arduino to Webpage using Wi-Fi module					
Week-9	IOT WITH RASBERRY PI					
Introduction to I	Introduction to Internet of things (IoT) by using a Raspberry Pi to connect devices.					
Week-10	SETUP WI-FI ON RASBERRY PI USING USB					
Programming for	how to Setup Wi-Fi on Raspberry Pi 2 using USB Dongle					
WeeK-11	SETUP WI-FI ON RASBERRY PI USING USB					

Programming to interface a motion sensor to use GPIO pins with a Raspberry Pi.

Week-12 INTERFACE TO GAS SENSOR

Programming to interface Gas sensor for detection and monitoring using Arduino and IoT

Text Books:

- 1. Mark torvalds, "Arduino Programming: Step-by-step guide to mastering arduino hardware and software(Arduino, Arduino projects, Arduino uno, Arduino starter kit, Arduino ide, Arduino yun, Arduino mega, Arduino nano) Kindle Edition
- 2. Michael J. Pont, "Embedded C", Pearson Education, 2nd Edition, 2008.

REFERENCES:

1. Luigi Atzor et.al, "The Internet of Things: A survey, ", Journal on Networks, Elsevier Publications, October 2010.

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Week	Topics to be covered	Course Learning	Reference
No.		Outcomes (CLOs)	
1	Introduction to Internet of Things (IoT) using Arduino	CLO 1, CLO 2	T1:1.4
	programming		
2	Programming for Controlling RGB LED using Arduino and Wi-	CLO 1, CLO 2	T1:1.5
	Fi Module		
3	Programming for Internet of things with Android and Arduino.	CLO 1, CLO 2,	T1:2.5
	Build an Arduino IoT to control a remote LED	CLO 3	
4	Programming for how to interface HC-05 Bluetooth Module	CLO 1, CLO 2,	T1:2.5
	with Arduino UNO for various application	CLO 4	
5	Programming to Interface Tempaetaure sensor and Monitoring	CLO 1, CLO 2,	T1:22.7
	using IoT with Arduino Uno and display digital value on LCD.	CLO 5	
6	Programming to Interface IR sensors and Blue tooth for	CLO 1, CLO 2,	T1:6.3
	detecting obstacle using Arduino with android Application.	CLO 6	
7	Programming for Node MCU for track location without using	CLO 1, CLO 2,	T1:7.5
	GPS module.	CLO 7	
8	Programming for how to send data from Arduino to Webpage	CLO 1, CLO 2,	T1:8.5
	using Wi-Fi module	CLO 8	
9	Introduction to Internet of things (IoT) by using a Raspberry Pi	CLO 1, CLO 2,	T1:12.2
	to connect devices.	CLO 9	
10	Programming for how to Setup Wi-Fi on Raspberry Pi 2 using	CLO 1, CLO 2,	T1:12.3
	USB Dongle.	CLO 10	
11	Programming to interface a motion sensor to use GPIO pins with	CLO 1, CLO 2,	T1:12.10
	a Raspberry Pi.	CLO 11	
12	Programming to interface Gas sensor for detection and	CLO 1, CLO 2,	T1:13.2
	monitoring using Arduino and IoT	CLO 12	

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY/PROFESSION REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Real time implementation of	Application oriented Projects and	PO 2, PO 3, PO 6
	simple modules using IoT.	ple modules using IoT. Seminars	
2	Program modeling Seminars / Guest Lectures /		PO 1, PO 6, PO 7
		NPTEL	

Prepared By: Ms. K Swathi, Assistant Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMBEDDED WI	EMBEDDED WIRELESS SENSOR NETWORKS							
Course Code	BESB14	BESB14							
Programme	M.Tech	M.Tech							
Semester	II	ΙΙ							
Course Type	Core								
Regulation	IARE - R18	IARE - R18							
		Theory	ry Practical						
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits				
	3 - 3								
Course Faculty	Dr. China Venkateswarlu, Professor								

I. COURSE OVERVIEW:

This course starts by introducing some basic ideas of wireless, embedded, internetworked sensor/actuator systems, an emerging technology that can provide visibility into and control over complex physical processes. Sensor net systems have applications to many societal-scale problems including health, safety, energy, and the environment. However, their design raises challenges across all areas of computer systems research, including platform architecture, power systems, operating systems, embedded databases, networking, data management, and machine learning. Many of these challenges stem from severe energy-constraints, deep physical embedding, volatile network connectivity, and small physical form factor, all of which present different design issues than traditional computing systems, and require a different design approach.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BESB14	Ι	Embedded System Design	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded Wireless Sensor Networks	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	>	Seminars	>	Videos	>	MOOCs
×	✗ Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each unit carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each unit. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

	50 %	To test the objectiveness of the concept.		
	30 %	To test the analytical skill of the concept.		
20 % To test the application skill of the concept.				

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Table 1: Assessment pattern for	or CIA
---------------------------------	--------

Component	Th	Total Marka	
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks
CIA Marks	25	05	30

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of embedded system and sub areas IoT, Processor technology, storage technology.	3	Term paper
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	Term paper and Guest Lectures
PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminar and Guest Lectures
PO 4	Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.	3	NPTEL Videos and Guest Lecturers

3 = **High**; **2** = **Medium**; **1** = Low

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand the concepts of sensor networks to use in embedded wireless sensor networks.
II	Use sensor programming in wireless sensor networks.
III	Analyze wireless sensor networks for different applications.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Define the hardware and other components, energy level of consumption of	CLO 1	Understanding the basic concept of WSN, challenges for WSNs, characteristic requirements, required mechanisms, single node architecture
	sensor nodes.	CLO 2	Study of hardware components, energy consumption of sensor nodes
		CLO 3	Examine the various operating systems and execution environments, some examples of sensor nodes
CO 2	Describe various principles involved in the design of Sensor network scenarios.	CLO 4	Discuss the various principles involved in the design of Sensor network scenarios, optimization goals and figures of merit
		CLO 5	Describe the functions of design principles for WSNs
CO 3	Demonstrate features of Sensor programming, introduction to	CLO 6	Study the features of service interfaces of WSNs, gateway concepts
	tiny OS programming.	CLO 7	Study the features of Sensor programming, introduction to tiny OS programming
		CLO 8	Understand the fundamentals of programming sensors using nes C
CO 4	Collect functions of design principles for WSNs.	CLO 9	Study the features of Algorithms for WSN Techniques for protocol programming
		CLO 10	Understand the concepts of cooperating objects and sensor networks

COs	Course Outcome	CLOs	Course Learning Outcome
CO 5	Discuss performance of wireless sensor networks	CLO 11	Study the features of system architectures, Study the design issues and design of programming models
	with mobile nodes, autonomous robotic teams for	CLO 12	Implement Wireless sensor networks for environmental monitoring
	surveillance and monitoring.	CLO 13	Analyze the performance of wireless sensor networks with mobile nodes, autonomous robotic teams for surveillance and monitoring
		CLO 14	Analyze the performance of Inter-vehicle communication networks

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strengt h of Mapping
BESB14.01	CLO 1	Discuss the various principles involved in the design of Sensor network scenarios, optimization goals and figures of merit	PO 3, PO 4,	3, 3
BESB14.02	CLO 2	Describe the functions of design principles for WSNs	PO 2, PO 3,	2, 3
BESB14.03	CLO 3	Study the features of service interfaces of WSNs, gateway concepts	PO 4	3
BESB14.04	CLO 4	Study the features of Sensor programming, introduction to tiny OS programming	PO 3	3
BESB14.05	CLO 5	Understand the fundamentals of programming sensors using nes C	PO 1	3
BESB14.06	CLO 6	Study the features of Algorithms for WSN Techniques for protocol programming	PO 1, PO 2	3, 2
BESB14.07	CLO 7	Understand the concepts of cooperating objects and sensor networks	PO 1, PO 3	3, 3
BESB14.08	CLO 8	Study the features of system architectures, Study the design issues and design of programming models	PO 1, PO 2	3, 2, 2
BESB14.09	CLO 9	Implement Wireless sensor networks for environmental monitoring	PO 2, PO 7	2, 2
BESB14.10	CLO10	Analyze the performance of wireless sensor networks with mobile nodes, autonomous robotic teams for surveillance and monitoring	PO 4, PO 7	3, 2
BESB14.11	CLO 11	Analyze the performance of Inter-vehicle communication networks	PO 2, PO 4	2, 3
BESB14.12	CLO 12	Discuss the various principles involved in the design of Sensor network scenarios, optimization goals and figures of merit	PO 3, PO 4	3, 3
BESB14.13	CLO 13	Describe the functions of design principles for WSNs	PO 2, PO 3	2, 3
BESB14.14	CLO 14	Study the features of service interfaces of WSNs, gateway concepts	PO 4	3

3 = High; 2 = Medium; 1 = Low2

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Outcomes (COs)	Program Outcomes(PO)					
	PO 1	PO 2	PO 3	PO 4		
CO 1	3	2	3			
CO 2		2	3	3		
CO 3	3		3	3		
CO 4	3	2	3			
CO 5	3	2		3		

3 = High; 2 = Medium; 1 = Low2

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES:

Course Learning		Progr	am Outcome(PO)	
Outcomes (CLOs)	PO 1	PO 2	PO 3	PO 4
CLO 1	3	2		
CLO 2		2		
CLO 3			3	
CLO 4			3	3
CLO 5		2	3	
CLO 6				3
CLO 7			3	
CLO 8	3			
CLO 9	3	2		
CLO 10	3		3	
CLO 11	3	2		
CLO 12		2		
CLO 13				3
CLO 14		2		3

3 = High; 2 = Medium; 1 = Low

XII. ASSESSMENT METHODOLOGIES – DIRECT:

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 3 PO 4,	Seminar and Term Paper	PO 1, PO 2 PO 3, PO 4
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -- INDIRECT:

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

UNIT-I	INTRODUCTION TO WSN	Classes: 09
architecture,	to WSN, challenges for WSNs, characteristic requirements, required mechani hardware components, energy consumption of sensor nodes, operating system s, some examples of sensor nodes.	-
UNIT-II	NETWORK ARCHITECTURE	Classes: 09
	bork scenarios, optimization goals and figures of merit, design principles for WSNs, serv way concepts.	ice interfaces of
UNIT-III	SENSOR NETWORK IMPLEMENTATION:	Classes: 09
	amming, introduction to tiny OS programming and fundamentals of programming sens for WSN: Techniques for protocol programming.	ors using nes C.
UNIT-IV	PROGRAMMING MODELS:	Classes: 09
An introduct models.	ion to the concept of cooperating objects and sensor networks, system architectures and	l programming
UNIT-V	CASE STUDIES:	Classes: 09
	s for surveillance and monitoring, Inter-vehicle communication networks.	odes, autonomou
Text Books		
 Holger ka 2005. 	rl, Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks", John V	Wiley, 1 st Edition
	avrilovska, Srdjan Krco, Veljko Milutinovic, Ivan Stojmenovic, Roman Trobec, "Appli plinary Aspects of Wireless Sensor Networks", Springer, London Limited, 1 st Edition,	
Reference I	Books:	
	anatre, Pedro Jose Marron, Anibal Ollero, A. Dam Wolisz, "Cooperating Embedded Sy Sensor Networks", John Wiley & Sons, 1 st Edition, 2008.	stems and
	nan Iyengar, Nandhan, "Fundamentals of Sensor Network Programming Applications a ey & Sons, 1 st Edition, 2008.	and Technology".

XV. COURSE PLAN:

The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
1-3	Understanding the basic concept of WSN, challenges for WSNs, characteristic requirements, required mechanisms, single node architecture	Introduction to WSN, challenges for WSNs, characteristic requirements, required mechanisms	T1:2.3 to 2.7 R1: 1.5 to 1.8
4-6	Study of hardware components, energy consumption of sensor nodes	Single node architecture, hardware components	T1:4.1 to 4.8 R2: 2.7 to 2.8
7-9	Examine the various operating systems and execution environments, some examples of sensor nodes	energy consumption of sensor nodes, operating systems and execution environments, some examples of sensor nodes	T1:7.1 to 7.9 R1: 2.15 to 2.16
10-13	Discuss the various principles involved in the design of Sensor network scenarios, optimization goals and figures of merit	Sensor network scenarios, optimization goals and figures of merit	T1:8.1 to 8.4 R1: 3.4 to 3.5
14-16	Describe the functions of design principles for WSNs	design principles for WSNs, service interfaces of WSNs, gateway concepts	T1:8.8 to 8.9 R1: 3.8 to 3.9
17-20	Study the features of service interfaces of WSNs, gateway concepts	Sensor programming, introduction to tiny OS programming and fundamentals of programming sensors using nes C	T2: 8.13 to 8.14 R1: 3.12 to 3.13
21-24	Study the features of Sensor programming, introduction to tiny OS programming	Algorithms for WSN: Techniques for protocol programming	T2: 9.4 to 9.6 R1: 4.5 to 4.7
25-28	Study the features of Algorithms for WSN Techniques for protocol programming	An introduction to the concept of cooperating objects and sensor networks	T2: 9.10 to 9.11 R1: 5.1 to 5.5
29-32	Understand the concepts of cooperating objects and sensor networks	system architectures and programming models	T2: 1.6 R1: 5.10 to 5.12
32-36	Study the features of system architectures, Study the design issues and design of programming models	Wireless sensor networks for environmental monitoring	T2: 1.9 R2: 2.1 to 2.3
37-40	Implement Wireless sensor networks for environmental monitoring	wireless sensor networks with mobile nodes	T2: 2.7 to 2.8 R2: 3.1 to 3.5
41-45	Analyze the performance of wireless sensor networks with mobile nodes, autonomous robotic teams for surveillance and monitoring.	autonomous robotic teams for surveillance and monitoring, Inter-vehicle communication networks.	T2: 4.5 to 4.6 R2: 5.8 to 5.9

XVI. GAPS IN THE SYLLABUS-TO MEET INDUSTRY /PROFESSIONAL REQUIREMENTS:

S No	Description	Proposed Actions	Relevance with POs
1	Design of Sensor network scenarios	Seminars / NPTEL	PO 1, PO 3, PO 4
2	OS programming technology	Seminars / Guest Lectures / NPTEL	PO 2, PO 4, PO 7
3	Low-Power Networking Systems	Laboratory Practices	PO 3, PO 4

Prepared By:

Dr. China Venkateswarlu, Professor

HOD, ECE

III SEMESTER

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	EMB	EMBEDDED REAL TIME OPERATING SYSTEMS							
Course Code	BESB	BESB22							
Programme	M.Te	M.Tech (ES)							
Semester	ш	III ECE							
Course Type	Elective								
Regulation	R18								
	Theory Practical								
Course Structure		Lectures	Tutorials	Practicals	Credits				
		3	-	-	3				
Course Faculty	Dr. S China Venkateswarlu, Professor, ECE								

I. COURSE OVERVIEW:

Embedded Real-Time Operating System presents computing environment that reacts to input within a specific time period. A real-time deadline can be so small that system reaction appears instantaneous. The term real-time computing has also been used, however, to describe "slow realtime" output that has a longer, but fixed, time limit. Learning the difference between real-time and standard operating systems is as easy as imagining yourself in a computer game. Each of the actions you take in the game is like a program running in that environment. A game that has a real-time operating system for its environment can feel like an extension of your body because you can count on a specific "lag time:" the time between your request for action and the computer's noticeable execution of your request. A standard operating system, however, may feel disjointed because the lag time is unreliable. To achieve time reliability, real-time programs and their operating system environment must prioritize deadline actualization before anything else. In the gaming example, this might result in dropped frames or lower visual quality when reaction time and visual effects conflict.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
PG	BESB01	Ι	Principles of Distributed Embedded System	3

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Embedded Real Time Operating Systems	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
×	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into five units and each module carries equal weight age in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the questions is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.				
30 %	To test the analytical skill of the concept.				
20 %	To test the application skill of the concept.				

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Component	The	Theory		
Type of Assessment	CIE Exam	Technical Seminar and Term Paper	Total Marks	
CIA Marks	25	05	30	

Table 1: Assessment pattern for CIA

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carrying 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of Technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Apply advanced level knowledge, techniques, skills and modern tools in the field of Embedded Systems and sub areas IoT, Processor technology, and Storage technology.	3	Seminar and Term Paper
PO 2	Function on multidisciplinary environments by working cooperatively, creatively and responsibly as a member of a team.	2	Guest Lectures

PO 3	Respond to global policy initiatives and meet the emerging challenges with sustainable technological solutions in the field of electronic product designing.	3	Seminars
PO 4	Demonstrate the importance of embedded technologies and design new innovative products for solving society relevant problems.	3	Guest Lecturers
	3 = High; 2 = Medium; 1 = Low		

VII. COURSE OBJECTIVES:

The course should enable the students to:

Ι	Understand and analyze theory and implementation of tasks.
Π	Analyze synchronization problems and to use semaphore operations.
III	Analyze interrupt service routines for interrupts and timers.

VIII. COURSE OUTCOMES (COs):

COs	Course Outcome	CLOs	Course Learning Outcome
CO 1	Understanding the	CLO 1	Understanding the basic concept of
	UNIX/LINUX, overview of		UNIX/LINUX, overview of commands.
	commands, file I/O (open,	CLO 2	Study of file I/O (open, create, close, lseek, read,
	create, close, lseek, read,	67.00	write),
	write), process control (fork, vfork, exit, wait, wait, waitpid,	CLO 3	Examine the process control (fork, vfork, exit, wait,
	exec).		waitpid, exec).
CO 2	Examine the RTOS, history	CLO 4	Discuss the RTOS, history of OS, Scheduler,
	of OS, Scheduler, objects,		objects, services, characteristics of RTOS, defining
	services, characteristics of RTOS, defining a task, asks	CLO 5	a task. Understand asks states and scheduling, task
	states and scheduling, task	CLU 5	operations, structure, synchronization,
	operations, structure,		Communication.
	synchronization,		Examine the concurrency, defining
	communication and	CLO 6	Semaphores, operations and use.
	concurrency, defining		
	semaphores, operations and use, defining message	$CI \cap 7$	Describe the defining message
	queue, states, content,	CLO 7	Queue, states, content, storage, operations and use
	storage, operations and use.		
CO 3	Describe the Objects,	CLO 8	Study the Objects, Services AND I/O, Pipes, event
	Services AND I/O, Pipes,		registers, and signals.
	event registers, signals, other	CLO 9	Study the other building blocks, component
	building blocks, component configuration. Basic I/O	CLO 10	configuration. Describe the Basic I/O concepts, I/O subsystem
	concepts, I/O subsystem	CLO 10	Describe the Basic 1/O concepts, 1/O subsystem.
CO 4	Study Exceptions, Interrupts	CLO 11	Understand Exceptions, Interrupts and Timers,
	and Timers, Exceptions,		Exceptions, interrupts.
	interrupts, applications,	CLO 12	Study applications, processing of exceptions and
	processing of exceptions and spurious interrupts, real time	CLO 13	spurious interrupts. Describe real time clocks, programmable
	clocks, programmable		timers, timer interrupt.
	timers, timer interrupt	CLO 14	Understand the Service routines, soft timers,
	Service routines, soft timers,		operations.
	operations.		•
CO 5	Analyze Case Studies Of	CLO 15	Study Case Studies Of RTOS, RT linux
	RTOS, RT linux, Micro	CLO 16	Understand RT linux, Micro C/OS-II, Vx works,
	C/OS-II,Vx works, embedded linux, tiny OS and		embedded linux
	embedded mux, uny OS and		

basic OS.	concepts	of	android	CLO 17	Study RT linux, Micro C/OS-II,Vx works, embedded linux, tiny OS.
				CLO 18	Examine tiny OS and basic concepts of android OS.

IX. COURSE LEARNING OUTCOMES (CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to:	PEO's Mapped	Strength of Mappin g
BESB22.01	CLO 1	Understanding the basic concept of	PO 1	g 2
DEGDAA		UNIX/LINUX, overview of commands	PO 2	
BESB22.02	CLO 2	Study of file I/O (open, create, close, lseek, read, write).	PO 2	2
BESB22.03	CLO 3	Examine the process control (fork, vfork, exit, wait, waitpid, exec).	PO 3	3
BESB22.04	CLO 4	Discuss the RTOS, history of OS, Scheduler,	PO 3	3
		objects, services, characteristics of RTOS, defining a task.	PO 4	
BESB22.05	CLO 5	Understand asks states and scheduling, task	PO 2	2
		operations, structure, synchronization, Communication.	PO 3	
BESB22.06	CLO 6	Examine the concurrency, defining Semaphores, operations and use.	PO 4	3
BESB22.07	CLO 7	Describe the defining message Queue, states, content, storage, operations and use	PO 3	3
BESB22.08	CLO 8	Study the Objects, Services AND I/O, Pipes, event registers, and signals.	PO 1	3
BESB22.09	CLO 9	Study the other building blocks, component	PO 1	2
		configuration.	PO 2	
BESB22.10	CLO 10	Describe the Basic I/O concepts, I/O	PO 1	3
		subsystem	PO 3	
BESB22.11	CLO 11	Understand Exceptions, Interrupts and Timers,	PO 1	2
		Exceptions, interrupts.	PO 2	
BESB22.12	CLO 12	Study applications, processing of exceptions and spurious interrupts.	PO 2	2
BESB22.13	CLO 13	Describe real time clocks, programmable timers, timer interrupt.	PO 4	3
BESB22.14	CLO 14	Understand the Service routines, soft timers,	PO 3	2
		operations.	PO 4	
BESB22.15	CLO 15	Study Case Studies Of RTOS, RT linux.	PO 2	3
			PO 3	
BESB22.16	CLO 16	Understand RT linux, Micro C/OS-II,Vx	PO 3	2
		works, embedded linux	PO 4	
BESB22.17	CLO 17	Study RT linux, Micro C/OS-II, Vx works,	PO 2	2
DECD22.10	CLO 19	embedded linux, tiny OS.	PO 3	2
BESB22.18	CLO 18	Examine tiny OS and basic concepts of android OS.	PO 3 PO 4	3
) TT' I /		r04	

3 = High; 2 = Medium; 1 = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes (COs)	Program Outcomes (PO)							
	PO 1	PO 2	PO 3	PO 4				
CO 1	3	2	3					
CO 2	3	2	3	3				
CO 3	3		3	3				
CO 4	3	2	3					
CO 5	3	2		3				

XI. MAPPING COURSE LEARNING OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

	comes (PO)		
PO 1	PO 2	PO 3	PO 4
3	2		
	2		
		3	
		3	
	2	3	
	2	3	
		3	
3			
3	2		
3		3	
3	2		
	2		
		2	
		2	
	2		
	2		
	2		
	3	PO1 PO 2 3 2 2 2 2 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

3 = High; **2** = Medium; **1** = Low

XII. ASSESSMENT METHODOLOGIES -DIRECT

CIE Exams	PO 1, PO 2 PO 3, PO 4	SEE Exams	PO 1, PO 3 PO 4	Seminar and Term Paper	PO 1, PO 2 PO 3, PO 4
Viva	-	Mini Project	-	Laboratory Practices	-

XIII. ASSESSMENT METHODOLOGIES -INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		

XIV. SYLLABUS:

Unit-I	INTRODUCTION :
	n to UNIX/LINUX, overview of commands, file I/O (open, create, close, lseek, read, write), ttrol (fork, vfork, exit, wait, waitpid, exec).
Unit-II	REAL-TIME OPERATING SYSTEMS :
asks states	y of OS, defining RTOS, Scheduler, objects, services, characteristics of RTOS, defining a task, and scheduling, task operations, structure, synchronization, communication and concurrency, maphores, operations and use, defining message queue, states, content, storage, operations and
Unit-III	OBJECTS, SERVICES AND I/O :
Pipes, even subsystem	t registers, signals, other building blocks, component configuration. Basic I/O concepts, I/O
Unit-IV	EXCEPTIONS, INTERRUPTS AND TIMERS :
	interrupts, applications, processing of exceptions and spurious interrupts, real time clocks, ble timers, timer interrupt service routines, soft timers, operations.
Unit-V	CASE STUDIES OF RTOS :
RT linux, N	Aicro C/OS-II, Vx works, embedded linux, tiny OS and basic concepts of android OS.
Text Books	5:
5. Qi	ng Li, "Real Time Concepts for Embedded Systems", Elsevier, 1st Edition, 2011
Reference	Books:
	ijkamal, "Embedded Systems, Architecture, Programming and Design", Tata Mc Graw Hill, d Edition, 2003.
	chard Stevens, "Advanced UNIX Programming", Addison-Wesley Professional, 3rd Edition, 13
	r. Craig Hollabaugh, "Embedded Linux: Hardware, Software and Interfacing", Addison esley, 1st Edition, 2002
Web Refer	ences:
2. htt	p://nptel.ac.in/courses/106105036/ .ps://www.youtube.com/watch?v=rpdygqOI9mM .ps://www.youtube.com/watch?v=hELr9-7aAG8
E-Text Bo	oks:
	ww.nptel.ac.in/courses/108105057/Pdf/Lesson-31.pdf ww.nptel.ac.in/courses/106108101/pdf/Lecture_Notes/Mod%208_LN.pdf

XV. COURSE PLAN: The course plan is meant as a guideline. There may probably be changes.

Lecture No	Topic Outcomes	Topics to be covered	Reference
1-3	Understanding the UNIX/LINUX, overview of commands, file I/O (open, create, close, lseek, read, write),	UNIX/LINUX, overview of commands, file I/O (open, create, close, lseek, read, write),	T2:3.1 to 3.7
4-6	Introduction to process control (fork, vfork, exit, wait, waitpid, exec).	Introduction to process control (fork, vfork, exit, wait, waitpid, exec).	T2:3.1 to 3.7
7-9	Examine the to process control- fork, vfork, exit, wait, waitpid, exec	process control- fork, vfork, exit, wait, waitpid, exec	T2:8.1 to 8.17
10-13	Discuss the Real-Time Operating Systems, Brief history of OS, defining RTOS, Scheduler	Real-Time Operating Systems, Brief history of OS, defining RTOS, Scheduler	T1:8.1 to 8.11
14-16	Describe the objects, services, characteristics of RTOS, defining a task, asks states and scheduling	objects, services, characteristics of RTOS, defining a task, asks states and scheduling	T1:8.1 to 8.11
17-20	Study the task operations, structure, synchronization, communication and concurrency, defining semaphores, operations and use, defining message queue,	task operations, structure, synchronization, communication and concurrency, defining semaphores, operations and use, defining message queue,	T1:9.1 to 9.6 T1:10.1 to 10.5
21-24	Study the states, content, storage, operations and Pipes, event registers, signals, other building blocks, component configuration.	states, content, storage, operations and Pipes, event registers, signals, other building blocks, component configuration.	T1:13.1 to 13.6
25-28	Understand Basic I/O concepts, I/O subsystem	Basic I/O concepts, I/O subsystem	T1:13.1 to 13.6
29-32	Understand Exceptions, interrupts, applications, processing of exceptions and spurious interrupts	Exceptions, interrupts, applications, processing of exceptions and spurious interrupts	T1:13.1 to 13.6
33-36	Study the programmable timers, timer interrupt service routines, soft timers, operations.	timer interrupt service routines, soft timers, operations.	T1:11.1 to 11.3
37-40	Analyze RT linux, Micro C/OS- II, Vx works, embedded linux,	RT linux, Micro C/OS-II, Vx works, embedded linux,	T1:9.1 to 9.3
41-45	Examine the embedded linux, tiny OS and basic concepts of android OS.	embedded linux, tiny OS and basic concepts of android OS.	T1:13.1 to 13.6

XVI. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S. No	Description	Proposed Actions	Relevance with POs
1	Design of Sensor network scenarios	Seminars / NPTEL	PO 1, PO 3, PO 4
2	OS programming technology	Seminars / Guest Lectures / NPTEL	PO 3, PO 4
3	Low-Power Networking Systems	Laboratory Practices	PO 3, PO 4

Prepared By: Dr. S China Venkateswarlu, Professor

HOD, ECE

INSTITUTE OF AERONAUTICAL ENGINEERING

(Autonomous) Dundigal, Hyderabad -500 043

ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE DESCRIPTOR

Course Title	RESEARC	RESEARCH METHODOLOGY AND IPR				
Course Code	BCSB31	BCSB31				
Programme	M.Tech	M.Tech				
Semester	III	III				
Course Type	Core	Core				
Regulation	R18	R18				
	Theory Practical				actical	
Course Structure	Lectures	Tutorials	Credits	Laboratory	Credits	
	2	-	2	-	-	
Course Faculty	Dr. P. Ashok Babu ,Professor					

I. COURSE OVERVIEW:

Fundamental of Research Methodology and Data Collection is an excellent book that has a collection of basic concepts and terminologies in research method. It is filled with good ideas and tips on how to write very good articles that are fit for publication in reputable journals. The author has tried to identify problems encountered by young researchers and also proffered solutions to those problems. Detailed write-up on sampling techniques and sample size determination were well written and demonstrated in an excellent manner. It is also recommended to staff and students of all tertiary institutions especially those that want to learn how to become their best in research.

II. COURSE PRE-REQUISITES:

Level	Course Code	Semester	Prerequisites	Credits
UG	-	-	Probability And Statistics	-

III. MARKS DISTRIBUTION:

Subject	SEE Examination	CIA Examination	Total Marks
Research Methodology and IPR	70 Marks	30 Marks	100

IV. DELIVERY / INSTRUCTIONAL METHODOLOGIES:

~	LCD / PPT	~	Seminars	~	Videos	~	MOOCs
~	Open Ended Experiments						

V. EVALUATION METHODOLOGY:

The course will be evaluated for a total of 100 marks, with 30 marks for Continuous Internal Assessment (CIA) and 70 marks for Semester End Examination (SEE). Out of 30 marks allotted for CIA during the semester, marks are awarded by taking average of two CIA examinations or the marks scored in the make-up examination.

Semester End Examination (SEE): The SEE is conducted for 70 marks of 3 hours duration. The syllabus for the theory courses is divided into FIVE modules and each module carries equal weightage in terms of marks distribution. The question paper pattern is as follows. Two full questions with "either" or "choice" will be drawn from each module. Each question carries 14 marks. There could be a maximum of two sub divisions in a question.

The emphasis on the experiments is broadly based on the following criteria:

50 %	To test the objectiveness of the concept.
50 %	To test the analytical skill of the concept OR to test the application skill of the concept.

Continuous Internal Assessment (CIA):

CIA is conducted for a total of 30 marks (Table 1), with 25 marks for Continuous Internal Examination (CIE), 05 marks for Technical Seminar and Term Paper.

Table 1: Assessment	pattern for CIA
---------------------	-----------------

Component	Theory CIE Exam Technical Seminar and Term Paper		Total Marks	
Type of Assessment				
CIA Marks	25	05	30	

Continuous Internal Examination (CIE):

Two CIE exams shall be conducted at the end of the 9th and 17th week of the semester respectively. The CIE exam is conducted for 25 marks of 2 hours duration, consisting of 5 one mark compulsory questions in part-A and 4 questions in part-B. The student has to answer any 4 questions out of five questions, each carries 5 marks. Marks are awarded by taking average of marks scored in two CIE exams.

Technical Seminar and Term Paper:

Two seminar presentations and the term paper with overview of topic are conducted during II semester. The evaluation of technical seminar and term paper is for maximum of 5 marks. Marks are awarded by taking average of marks scored in two Seminar Evaluations.

VI. HOW PROGRAM OUTCOMES ARE ASSESSED:

	Program Outcomes (POs)	Strength	Proficiency assessed by
PO 1	Engineering knowledge : Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems	3	Seminar and Term paper
PO 2	Problem analysis : Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences	3	Guest Lecture
PO 4	Conduct investigations of complex problems: Use researchbased knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to providevalid conclusions	3	Seminar and Term paper
PO 5	Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.	3	Seminar and Term paper
PO 6	The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.	3	Seminar and Term paper

3 = High; **2** = Medium; **1** = Low

VII. COURSE OBJECTIVES:

	The course should enable the students to:				
Ι	Identify an appropriate research problem in their interesting domain.				
II	Organize and conduct research project.				
III	Understand the Preparation of a research project thesis report.				
IV	Understand the law of patent and copyrights.				
v	Understand the Adequate knowledge on IPR				

VIII. COURSE OUTCOMES (COs):

Cos	Course Outcomes	CLOs	Course Learning Outcomes
	Understand the research process and formulate the research	CL01	Understand The Different Approaches of Research
CO1	problem	CLO2	Understand the features of good design, types of research design
CO2	Illustrate various measurement, scaling and estimate hypotheses	CLO3	Understand the forecasting techniques and scale construction techniques
	values in research	CLO4	understand the time series analysis, interpolation and extrapolation;

CO3	Explore on various data collection methods and professional attitude, goals and ethics	CLO5	understand the collection of secondary data, cases and schedules
		CLO6	Professional attitude and goals, concept of excellence, ethics in science and engineering
		CLO7	understand the participation in public debates on scientific issues
		CLO8	understand the famous frauds in science, and case studies.
CO4	Prepare a well-structured research paper and scientific presentations	CLO9	understand the techniques of interpretation, and making scientific presentation
		CLO10	understand the patent laws, patent and searching process.
CO5	Explore on various IPR components and process of filing	CLO11	understand the importance of intellectual property rights.
		CLO12	understand the rights to perform the, copy right ownership issues.

IX. COURSE LEARNING OUTCOMES(CLOs):

CLO Code	CLO's	At the end of the course, the student will have the ability to	PO's Mapped	Strength of Mapping
BCSB31.01	CLO 1	Understand The Different Approaches of Research	PO1,PO2	3
BCSB31.02	CLO 2	Understand the features of good design, types of research design,	PO 1 PO2	3
BCSB31.03	CLO 3	Understand the forecasting techniques and scale construction techniques	PO 2, PO4	3
BCSB31.04	CLO 4	understand the time series analysis, interpolation and extrapolation;	PO1,PO 2 &PO4	3
BCSB31.05	CLO 5	understand the collection of secondary data, cases and schedules	PO2,PO5	2
BCSB31.06	CLO 6	Professional attitude and goals, concept of excellence, ethics in science and engineering	PO1,PO5	3
BCSB31.07	CLO 7	understand the participation in public debates on scientific issues	PO 1,PO3	3
BCSB31.08	CLO 8	understand the famous frauds in science, and case studies.	PO1,PO4 & PO6	3
BCSB31.09	CLO 9	understand the techniques of interpretation, and making scientific presentation	PO4,PO5 &PO6	3
BCSB31.10	CLO 10	understand the patent laws, patent and searching process,	PO4,PO5, &PO6	2
BCSB31.11	CLO 11	understand the importance of intellectual property rights;	PO 5,PO6	3
BCSB31.12	CLO 12	understand the rights to perform the, copy right ownership issues	PO 5,PO6	3

3 = High; **2** = Medium; **1** = Low

X. MAPPING COURSE OUTCOMES LEADING TO THE ACHIEVEMENT OF PROGRAM OUTCOMES

Course Outcomes	Program Outcomes				
(COs)	PO1	PO2	PO4	PO5	PO6
CO 1	3	3			
CO 2	3	3	3		
CO 3	3		3	3	
CO 4			3	3	3
CO 5				3	3

XI. ASSESSMENT METHODOLOGIES – DIRECT

CIE Exams	PO 1,PO 2 , PO4, PO5, PO6	SEE Exams	PO 1,PO 2 , PO4, PO5, PO6	Seminars and term paper	PO 6
VIVA	-	Student Viva	-	Mini Project	-

XII. ASSESSMENT METHODOLOGIES – INDIRECT

~	Early Semester Feedback	~	End Semester OBE Feedback
×	Assessment of Mini Projects by Experts		ts by Experts

XIII. SYLLABUS

UNIT-I	MEANING OF RESEARCH PROBLEM	Classes: 09			
problem, E	of research problem, Sources of research problem, Criteria Characteristics of a crors in selecting a research problem, Scope and objectives of research problem. on of solutions for research problem, data collection, analysis, interpretat ations.	Approaches of			
UNIT-II	LITERATURE STUDIES	Classes: 09			
Effective lit	terature studies approaches, analysis Plagiarism, and Research ethics.	<u> </u>			
UNIT-III	TECHNICAL WRITING	Classes: 09			
	chnical writing, how to write report, Paper Developing a Research Proposal. Forma presentation and assessment by a review committee.	t of research			
UNIT-IV	NATURE OF INTELLECTUAL PROPERTY	Classes: 09			
Nature of I	Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting	and			
Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.					
UNIT-V	PATENT RIGHTS AND NEW DEVELOPMENTS IN IPR	Classes: 09			

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications. New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

XIV. COURSE PLAN:

Lecture No	Topic Outcomes	Topic/s to be covered	Reference
1	Understand the concept of types of research	Definition, types of research	T1:2.1
2	Understand the various Research Approaches	Research Approaches	T1:2.3
3	understand Research process, validity and reliability in research	Research process, validity and reliability in research	T1:2.3.1
4	understand the Features of good design	Features of good design	T1:7.2
5	Understanding the Types of research design	Types of research design	T1:7.3
6	Understand the Basic principles of experimental design	Basic principles of experimental Design	T1:7.4
7	Understand the various types Errors in measurement	Errors in measurement	T1:7.5
8-9	Understand the tests of sound measurement	tests of sound measurement	T1:8.1
10-11	Understand the scaling and scale construction techniques	scaling and scale construction techniques	T1:8.2
12-13	Understand the forecasting techniques	Forecasting techniques	T1:8.3
14	Understand the concept of time series analysis	time series analysis	T1:8.4
15	Interpolation and extrapolation	Interpolation and extrapolation.	T1:8.5
16	understand the Primary data, questionnaire and interviews	Primary data, questionnaire and interviews	T1:8.6
17-18	Understand the collection of secondary data, cases and schedules	collection of secondary data, cases and schedules	T1:9.1
19	understand the Professional attitude and goals	Professional attitude and goals	T1:9.2, 9.3
20	Understanding the scheduling in DOS concept of excellence	concept of excellence	T2:9.3.4
21	Understand real time OS in DOS environment	ethics in science and engineering	T1:9.5
22	Understand the some famous frauds in science	some famous frauds in science	T2:7.1
23	Understand the Case studies	Case studies	T2:7.2
24	Understand the Layout of a research paper	Layout of a research paper	T2:7.3
25	techniques of interpretation	techniques of interpretation	T2:7.4

The course plan is meant as a guideline. Probably there may be changes.

26	Understand techniques of interpretation	techniques of interpretation	T2:8.3
27	Understand the making scientific presentation at conferences	making scientific presentation at conferences	T2:8.4
28	Understand the popular lectures to semi technical audience	popular lectures to semi technical audience	T3:8.5
29	Understand the participating in public debates on Scientific issues	participating in public debates on Scientific issues.	T3:8.6
30	Understand the types of intellectual property	Introduction, types of intellectual Property	T3:10.7
31	Understand the international organizations ,agencies and treaties	international organizations ,agencies and treaties	T3:10.8
32	Understand the importance of intellectual property rights	importance of intellectual property rights;	T3:10.9
33	understand the Law of copy rights, rights of reproduction	Law of copy rights: Fundamental of copy right law, originality of material, rights of reproduction	T3:11.7
34	understand the rights to perform the work publicly, copy right ownership issues	rights to perform the work publicly, copy right ownership issues	T3:11.7.1
35	understand copy right registration, notice of copy right	copy right registration, notice of copy right	T3:11.7.2
36	understand the international copy right law; Law of patents: Foundation of patent law, patent searching process,	international copy right law; Law of patents: Foundation of patent law, patent searching process,	T3:11.8
37	understand the ownership rights and transfer	ownership rights and transfer	T3:12.1-2

XIV. GAPS IN THE SYLLABUS - TO MEET INDUSTRY / PROFESSION REQUIREMENTS:

S NO	Description	Proposed actions	Relevance with POs
1	Knowledge on research problems.	Seminars/NPTEL	PO 2,PO 4

Prepared by: Dr. P. Ashok Babu, Professor